DP

动态规划

  1. 爬楼梯

回溯法

#include 

class Solution {
public:
    int climbStairs(int n) {
        if (n == 1 || n == 2){                          //递归出口,剩下两节返回两种方法
            return n;
        }
        return climbStairs(n-1) + climbStairs(n-2);     //递归树分两枝
    }
};

int main(){
    Solution solve;
    printf("%d\n", solve.climbStairs(3));   
    return 0;
}

动态规划

第i阶的方式数量 = 第i-1阶方式数量 + 第i-2阶方式方式数量

#include 

#include 
class Solution {
public:
    int climbStairs(int n) {
        std::vector dp(n + 3, 0);          
        dp[1] = 1;                              //边界条件
        dp[2] = 2;
        for (int i = 3; i <= n; i++){           //写出递推公式
            dp[i] = dp[i-1] + dp[i-2];
        }
        return dp[n];
    }
};

int main(){
    Solution solve;
    printf("%d\n", solve.climbStairs(3));   
    return 0;
}

盗取财宝,不能盗相邻房间

dp[i] = max(dp[i-1],dp[i-2]+nums[i])

#include 

#include 
class Solution {
public:
    int rob(std::vector& nums) {
        if (nums.size() == 0){                              //边界条件
            return 0;
        }
        if (nums.size() == 1){
            return nums[0];
        }
        std::vector dp(nums.size(), 0);                //递推公式
        dp[0] = nums[0];
        dp[1] = std::max(nums[0], nums[1]);
        for (int i = 2; i < nums.size(); i++){
            dp[i] = std::max(dp[i-1], dp[i-2] + nums[i]);
        }
        return dp[nums.size() - 1];
    }
};

int main(){
    Solution solve;
    std::vector nums;
    nums.push_back(5);
    nums.push_back(2);
    nums.push_back(6);
    nums.push_back(3);
    nums.push_back(1);
    nums.push_back(7);  
    printf("%d\n", solve.rob(nums));
    return 0;
}

最大加和序列

若dp[i-1]>0,dp[i]=dp[i-1]+nums[i]
否则dp[i]=nums[i]

#include 

#include 
class Solution {
public:
    int maxSubArray(std::vector& nums) {
        std::vector dp(nums.size(), 0);
        dp[0] = nums[0];                                    //边界条件
        int max_res = dp[0];
        for (int i = 1; i < nums.size(); i++){
            dp[i] = std::max(dp[i-1] + nums[i], nums[i]);   //递推公式
            if (max_res < dp[i]){                           //找到dp[i]中最大的
                max_res = dp[i];
            }
        }
        return max_res;
    }
};

int main(){
    Solution solve;
    std::vector nums;
    nums.push_back(-2);
    nums.push_back(1);
    nums.push_back(-3);
    nums.push_back(4);
    nums.push_back(-1);
    nums.push_back(2);
    nums.push_back(1);
    nums.push_back(-5);
    nums.push_back(4);
    printf("%d\n", solve.maxSubArray(nums));
    return 0;
}

最小数值钞票

当i-coins[j] >= 0且dp[i-coins[j]!=-1]时:  表示可以减去相应的钞票值,并且减去后对应的数组元素有值
j = 0,1,2,3,4; coins[j] = 1,2,5,7,10      
dp[i] = getmin(dp[i-coins[j]]) + 1        dp[i]就是减去一张钞票结果的最小值加一  
#include 

#include 

class Solution {
public:
    int coinChange(std::vector& coins, int amount) {
        std::vector dp;
        for (int i = 0; i <= amount; i++){
            dp.push_back(-1);
        }
        dp[0] = 0;                                                      //边界条件  
        for (int i = 1; i <= amount; i++){
            for (int j = 0; j < coins.size(); j++){
                if (i - coins[j] >= 0 && dp[i - coins[j]] != -1){       //可以减去相应的钞票值,并且减去后对应的数组元素有值
                    if (dp[i] == -1 || dp[i] > dp[i - coins[j]] + 1){   //dp[i]为-1或者dp[i]大于当前计算的结果
                        dp[i] = dp[i - coins[j]] + 1;                   //更新dp[i]
                    }
                }
            }
        }
        return dp[amount];
    }
};

int main(){ 
    Solution solve;
    std::vector coins;
    coins.push_back(1);
    coins.push_back(2);
    coins.push_back(5);
    coins.push_back(7);
    coins.push_back(10);    
    for (int i = 1; i<= 14; i++){
        printf("dp[%d] = %d\n", i, solve.coinChange(coins, i));
    }
    return 0;
}

三角形,最小路径

dp[i][j]=min(dp[i+1][j],dp[i+1][j+1])+triangle[i][j]


#include 
#include 

class Solution {
public:
    int minimumTotal(std::vector >& triangle){
        if (triangle.size() == 0){
            return 0;
        }
        std::vector > dp;                      //构造dp和三角形相同
        for (int i = 0; i < triangle.size(); i++){          
            dp.push_back(std::vector());
            for (int j = 0; j < triangle.size(); j++){
                dp[i].push_back(0);
            }
        }
        for (int i = 0; i < dp.size(); i++){                    //边界条件,最后一行就是triangle的值
            dp[dp.size()-1][i] = triangle[dp.size()-1][i];
        }
        for (int i = dp.size() - 2; i >= 0; i--){               //遍历列和行
            for (int j = 0; j < dp[i].size(); j++)              
                dp[i][j] = std::min(dp[i+1][j], dp[i+1][j+1])   //递推公式
                             + triangle[i][j];
        }
        return dp[0][0];
    }
};

int main(){
    std::vector > triangle;
    int test[][10] = {{2}, {3, 4}, {6, 5, 7}, {4, 1, 8, 3}};
    for (int i = 0; i < 4; i++){
        triangle.push_back(std::vector());
        for (int j = 0; j < i + 1; j++){
            triangle[i].push_back(test[i][j]);
        }
    }
    Solution solve;
    printf("%d\n", solve.minimumTotal(triangle));
    return 0;
}

最长上升子序列

若nums[i]>nums[j],说明nums[i]可放置在nums[j]的后面,组成最长上升子序列
若dp[i]

#include 

#include 

class Solution {
public:
    int lengthOfLIS(std::vector& nums) {
        if (nums.size() == 0){
            return 0;
        }
        std::vector dp(nums.size(), 0);
        dp[0] = 1;
        int LIS = 1;
        for (int i = 1; i < dp.size(); i++){                    //遍历所有
            dp[i] = 1;
            for (int j = 0; j < i; j++){                        //遍历之前的
                if (nums[i] > nums[j] && dp[i] < dp[j] + 1){    //当前数字能排到某序列后,并且比该序列长度加一小
                    dp[i] = dp[j] + 1;
                }
            }
            if (LIS < dp[i]){
                LIS = dp[i];
            }
        }
        return LIS;
    }
};

int main(){
    int test[] = {10, 9, 2, 5, 3, 7, 101, 18};
    std::vector nums;
    for (int i = 0; i < 8; i++){
        nums.push_back(test[i]);
    }
    Solution solve;
    printf("%d\n", solve.lengthOfLIS(nums));
    return 0;
}

第二种,用栈解决

#include 

#include 

class Solution {
public:
    int lengthOfLIS(std::vector& nums) {
        if (nums.size() == 0){
            return 0;
        }
        std::vector stack;
        stack.push_back(nums[0]);
        for (int i = 1; i < nums.size(); i++){
            if (nums[i] > stack.back()){                    //比栈顶大的就入栈
                stack.push_back(nums[i]);
            }
            else{
                for (int j = 0; j < stack.size(); j++){     //否则替换栈中第一个比他大的元素  
                    if (stack[j] >= nums[i]){
                        stack[j] = nums[i];
                        break;
                    }
                }
            }
        }
        return stack.size();
    }
};

int main(){
    int test[] = {1, 3, 2, 3, 1, 4};
    std::vector nums;
    for (int i = 0; i < 6; i++){
        nums.push_back(test[i]);
    }
    Solution solve;
    printf("%d\n", solve.lengthOfLIS(nums));
    return 0;
}

最小路径之和

#include 

#include 

class Solution {
public:
    int minPathSum(std::vector >& grid) {
        if (grid.size() == 0){
            return 0;
        }
        int row = grid.size();
        int column = grid[0].size();
        std::vector > 
                        dp(row, std::vector(column, 0));
        
        dp[0][0] = grid[0][0];
        for (int i = 1; i < column; i++){                   //先初始化第一行
            dp[0][i] = dp[0][i-1] + grid[0][i];
        }
        for (int i = 1; i < row; i++){                      //初始化其他  
            dp[i][0] = dp[i-1][0] + grid[i][0];             //第一列直接加
            for (int j = 1; j < column; j++){
                dp[i][j] = std::min(dp[i-1][j], dp[i][j-1]) + grid[i][j];   //其他的要对比两次加的结果  
            }
        }
        return dp[row-1][column-1];
    }
};

int main(){
    int test[][3] = {{1,3,1}, {1,5,1}, {4,2,1}};
    std::vector > grid;
    for (int i = 0; i < 3; i++){
        grid.push_back(std::vector());
        for (int j = 0; j < 3; j++){
            grid[i].push_back(test[i][j]);
        }
    }
    Solution solve;
    printf("%d\n", solve.minPathSum(grid)); 
    return 0;
}

最长公共子序列

dp[i][j] 表示子串A[0...i](数组长度为n)和子串B[0...j](数组长度为m)的最长公共子序列

当A[i] == B[j]时,dp[i][j] = dp[i-1][j-1] + 1;

否则,dp[i][j] = max(dp[i-1][j], dp[i][j-1]);

最优解为dp[n-1][m-1];

https://www.cnblogs.com/fengziwei/p/7827959.html
import java.util.Scanner;
 
public class Main {
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        while (scanner.hasNextLine()) {
            String str1 = scanner.nextLine().toLowerCase();
            String str2 = scanner.nextLine().toLowerCase();
            System.out.println(findLCS(str1, str1.length(), str2, str2.length()));
        }
    }
 
    public static int findLCS(String A, int n, String B, int m) {
        int[][] dp = new int[n + 1][m + 1];
        for (int i = 0; i <= n; i++) {
            for (int j = 0; j <= m; j++) {
                dp[i][j] = 0;
            }
        }
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= m; j++) {
                if (A.charAt(i - 1) == B.charAt(j - 1)) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = dp[i - 1][j] > dp[i][j - 1] ? dp[i - 1][j] : dp[i][j - 1];
                }
            }
        }
        return dp[n][m];
    }
}

股票问题

状态转移方程:
分为第i天不卖出和卖出
dp[k][i] = max(dp[k][i-1], dp[k-1][j]+price[i] - price[j], j属于[0,i-1])

你可能感兴趣的:(DP)