- golang-方法
lmryBC49
golang开发语言后端
方法概述方法是给类型增加的,通过类型实例.方法名()调用。例如我们用自定义类型保存了整数,我们想给该类型的变量都增加一个方法可以直接判断该数是不是奇数。packagemethod_knowledgeimport"fmt"//案例1:给Myint自定义类型添加奇数判断方法typeMyintintfunc(aMyint)IsOdd(){if(a%2==0){fmt.Println("a不是奇数")}e
- 基于kylin-v10安装docker
神奇侠2024
rediskylin大数据docker
1、下载地址Indexoflinux/static/stable/x86_64/2、下载docker-24.0.5.tgz.tar版本3、上传服务器解压tarxvfdocker-24.0.5.tgz.tar4、解压的docker拷贝或移动到/usr/bin/目录下cpdocker/*/usr/bin/5、编写docker.service文件加入Linux服务当中并开启守护进程vi/etc/syst
- python中strip的使用
ICER瞌睡虫
今天聊聊python去除字符串空格的函数:strip()和replace()1.strip():函数功能描述:Pythonstrip()方法用于移除字符串头尾指定的字符(默认为空格或换行符)或字符序列。注意:该方法只能删除开头或是结尾的字符,不能删除中间部分的字符。格式:str.strip([char])。其中,str为待处理的字符,char指定去除的源字符串首尾的字符。返回结果:去除空格时候的新
- PakePlus支持将vue/react等项目打包为跨平台桌面软件了
1024小神
多端开发vue.js前端javascript
PakePLus介绍Turnanywebpage/Vue/ReactandsoonintoadesktopappandmobileappwithRust.轻松将任意网站/Vue/React等项目构建为轻量级(仅5M)多端桌面应用和多端手机应用。pakeplus开源地址:GitHub-Sjj1024/PakePlus:Turnanywebpage/Vue/Reactandsoonintoadeskt
- Vue.js 中的 Memoization:提升性能的缓存技术
vvilkim
vuevue.js前端javascript
在现代前端开发中,性能优化是一个永恒的话题。随着应用规模的增大,复杂的计算和频繁的函数调用可能会导致性能瓶颈。Vue.js作为一个流行的前端框架,提供了多种优化手段,其中memoization(记忆化)就是一种非常有效的技术。本文将详细介绍Vue.js中的memoization,以及如何利用它来提升应用性能。什么是Memoization?Memoization是一种优化技术,通过缓存函数的结果来避
- Vue.js 性能优化:虚拟 DOM 与虚拟滚动
vvilkim
vuevue.js前端javascript
在现代前端开发中,性能优化是一个永恒的话题。Vue.js作为一款流行的前端框架,提供了许多强大的工具和技术来提升应用的性能。其中,虚拟DOM和虚拟滚动是两个非常重要的概念。本文将深入探讨它们的原理、优势以及如何在Vue.js中使用它们来优化性能。什么是虚拟DOM?虚拟DOM(VirtualDOM)是Vue.js用于提升性能的核心技术之一。它是一个轻量级的JavaScript对象树,用于表示真实DO
- python基于Django的旅游景点数据分析及可视化的设计与实现 7blk7
qq2295116502
pythondjango数据分析
目录项目介绍技术栈具体实现截图Scrapy爬虫框架关键技术和使用的工具环境等的说明解决的思路开发流程爬虫核心代码展示系统设计论文书写大纲详细视频演示源码获取项目介绍大数据分析是现下比较热门的词汇,通过分析之后可以得到更多深入且有价值的信息。现实的科技手段中,越来越多的应用都会涉及到大数据随着大数据时代的到来,数据挖掘、分析与应用成为多个行业的关键,本课题首先介绍了网络爬虫的基本概念以及技术实现方法
- AlphaFolding填补蛋白质动态结构预测空白!复旦大学等提出4D扩散模型,成果入选AAAI 2025
HyperAI超神经
ScienceAI人工智能深度学习机器学习扩散模型蛋白质结构AI4S4D
蛋白质的功能很大程度上取决于其3D结构。19世纪中期,科学界普遍认为蛋白质结构是固定的、刚性的,类似「锁与钥匙」模型(lock-and-keymodel),即蛋白质与配体的结合是由固定的三维结构决定的。然而,当DanielKoshland提出酶与底物结合时会发生构象变化的观点后,传统思维开始受到挑战。1980年代,分子动力学模拟(MolecularDynamics,MD)兴起,首次从计算角度揭示了
- 国外7个最佳大语言模型 (LLM) API推荐
幂简集成
API新理念语言模型人工智能自然语言处理
大型语言模型(LLM)API将彻底改变我们处理语言的方式。在深度学习和机器学习算法的支持下,LLMAPI提供了前所未有的自然语言理解能力。通过利用这些新的API,开发人员现在可以创建能够以前所未有的方式理解和响应书面文本的应用程序。下面,我们将比较从Bard到ChatGPT、PaLM等市场上顶级LLMAPI。我们还将探讨整合这些LLM的潜在用例,并考虑其对语言处理的影响。什么是大语言模型(LLM)
- 【深度学习】DeepSeek模型介绍与部署
Nerous_
深度学习深度学习人工智能
原文链接:DeepSeek-V31.介绍DeepSeek-V3,一个强大的混合专家(MoE)语言模型,拥有671B总参数,其中每个token激活37B参数。为了实现高效推理和成本效益的训练,DeepSeek-V3采用了多头潜在注意力(MLA)和DeepSeekMoE架构,这些架构在DeepSeek-V2中得到了充分验证。此外,DeepSeek-V3首次提出了无辅助损失的负载平衡策略,并设置了多to
- AI开发日记- Prompt Library篇
BillyXie23
AI探索prompt人工智能githubpythonAI编程
突发奇想想在git上host一个静态页面的promptlibrary,于是花了一天时间配合cursor硬是撸了出来Github地址:https://github.com/MrXie23/PromptLibrary页面地址PromptLibrary-探索AI提示的艺术目前代码结构有些混乱,有些失败的folder还没清理,不过基础功能都已经可以work了,接下来的开发roadmap是把一些没做的页面都
- stm32完全学习——NRF24L01模块
小A159
STM32完全学习stm32学习嵌入式硬件
对于这个模块的移植,无论是标准库还是HAL库,无论是软件模拟SPI还是,硬件SPI通信,网上都有很多的例子,这里关于移植的事情就不再赘述了。一、调试中遇到的一些问题我是用的别人的代码进行移植的,使用的是软件模拟SPI时序,在进行通信的时候,可以正确检测到NRF24L01的存在,但是发送数据和接收数据都不能成功的运行,本来以为是发送的时候数据包设置的不正确,后来发现他的代码里面使用软件SPI里面的延
- 【NLP】 API在大语言模型中的应用
Nerous_
深度学习自然语言处理语言模型人工智能
大语言模型(LargeLanguageModels,LLMs)通过API(应用程序接口)为开发者提供了便捷的调用方式,使其能够快速集成自然语言处理能力到各类应用中。以下是API在LLM中的核心应用场景及技术实现细节:一、核心应用场景自然语言理解与生成应用示例:智能客服:解析用户问题并生成回复(如ChatGPTAPI)。内容创作:自动生成文章、广告文案或代码(如OpenAI的GPT-4)。技术实现:
- 源码篇:python生成《蔬菜店销售数据分析报告》案例
IT小本本
pythonpython数据分析开发语言
本文将通过Python实现一个完整的蔬菜销售数据分析项目,涵盖数据生成、清洗、分析及可视化全流程。我们将利用模拟数据生成技术创建90天的销售记录,通过Pandas进行数据处理,结合Matplotlib和Seaborn实现多样化的可视化图表,并最终生成动态交互报告。一、数据生成:模拟真实销售场景为了模拟真实的蔬菜销售数据,我们设计了包含10种蔬菜(白菜、土豆、西红柿等)的90天销售记录。数据生成逻辑
- 基于ssm的林木生长管理系统
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍在我们的日常生活中,森林资源的管理和保护是一个重要的环保议题。为了有效地管理森林资源,许多科研机构和政府部门正在寻找更高效的技术手段。这就是我们今天要讨论的主题:基于SSM的林木生长管理系统。SSM是SpringMVC、Spring和MyBatis三个开源框架的缩写。这三个框架在Java开发中被广泛使用,因为它们可以提供一种简单、高效的方式来开发和维护复杂的Web应用程序。在这篇文章中
- JVM垃圾回收器全面解析:从核心概念到选型指南
Debug Your Career
面试jvmjava
一、引言在Java应用运行过程中,垃圾回收(GarbageCollection,GC)是内存管理的核心机制,直接影响程序性能。JVM提供了多种垃圾回收器,适用于不同场景。本文将系统梳理主流垃圾回收器的工作原理、适用场景及选型策略。二、GC核心概念分代收集:堆内存分为新生代(YoungGeneration)和老年代(OldGeneration),采用不同回收策略。STW(Stop-The-World
- 图论——Prim算法
水代码的程序猿
力扣算法图论数据结构
53.寻宝(第七期模拟笔试)题目描述在世界的某个区域,有一些分散的神秘岛屿,每个岛屿上都有一种珍稀的资源或者宝藏。国王打算在这些岛屿上建公路,方便运输。不同岛屿之间,路途距离不同,国王希望你可以规划建公路的方案,如何可以以最短的总公路距离将所有岛屿联通起来(注意:这是一个无向图)。给定一张地图,其中包括了所有的岛屿,以及它们之间的距离。以最小化公路建设长度,确保可以链接到所有岛屿。输入描述第一行包
- 【DNN量化工具】QKeras 工具简介
kanhao100
笔记dnn人工智能神经网络
QKeras工具简介QKeras是一个用于量化深度学习模型的Keras扩展库,旨在使深度学习模型的量化(即将模型的浮点权重转换为低精度格式)变得简单而高效。QKeras主要目标是优化模型的存储和推理速度,特别适用于需要在资源受限的设备(如移动设备和嵌入式系统)上运行深度学习模型的场景。QKeras的主要特点量化支持:QKeras提供了对不同类型量化的支持,包括权重量化和激活量化。用户可以根据需求选
- DeepSeek来袭!低代码+AI竟让程序员摸鱼接私单月入5W!
工业甲酰苯胺
低代码人工智能
目录一、引言:开启低代码+AI新时代二、DeepSeek与低代码、AI的关联(一)DeepSeek简介(二)低代码开发概述(三)AI赋能低代码三、低代码+AI开启私单赚钱大门(一)成功案例剖析(二)私单项目类型(三)赚钱模式解析四、实战:利用DeepSeek接私单(一)工具准备与环境搭建(二)需求分析与项目规划(三)低代码开发实战(四)AI技术融合应用(五)项目测试与交付五、挑战与应对策略(一)技
- Softmax温度调节与注意力缩放:深度神经网络中的平滑艺术
Mark White
dnn人工智能神经网络
Softmax温度调节与注意力缩放:深度神经网络中的平滑艺术在深度学习的精密机械中,有些细微的调整机制往往被视为理所当然,却实际上蕴含着深刻的数学洞察和巧妙的工程智慧。今天,我们将探讨两个看似独立却本质相通的机制:生成模型中的温度参数与Transformer注意力机制中的缩放因子。这两个设计都围绕着同一个核心概念——softmax分布的平滑控制。Softmax函数:概率分布的催化剂在深入讨论之前,
- React中的高优先级任务插队机制
东方睡衣
react.jsjavascript前端
说到高优先级任务插队机制,就要提到Reatfiber这个东西了,也就是时间分片,说实话这东西我之前了解过,但是下午被面试官问到了,我还说都能答上来,结果突然问到时间分片后,被分化的小任务的执行顺序,还有就是如果有优先级高的任务插入进来,它们的执行顺序是什么,当时头皮发麻,想着我都说到这里了,怎么还问,刚刚看了下,其实原理很简单,下面一起来看看吧!在React的concurrent模式下,低优先级任
- cv2 orb 图像拼接_图像拼接Opencv源码重构
是佐罗而非索隆
cv2orb图像拼接
请看赵春江https://me.csdn.net/zhaocj的主页,他已经对Opencv图像拼接流程中的代码做了很详细的解释。前人栽树,后人乘凉。一.本文所做的事1.重构了Opencv图像拼接的源代码,整个代码是面向过程的;2.在赵春江源码分析基础上,对一些细节部分进行说明。代码链接:https://github.com/mhhai/ImageStitch二.特征点检测一切起源于这段代码Ptrf
- 高级前端面试题-React
圣诞小子
javascript面试
react概念类组件和函数组件,什么时候用类组件获取组件实例类组件如何实现逻辑复用?高阶组件、renderprops选择hooks的优点状态逻辑复用;状态逻辑集中,易于理解;类组件不利于优化,比如不能很好的压缩为什么要用hooks,解决了什么问题同上react的context的使用场景共享对一个组件树全局的信息,不需要一层层传参受控组件和非受控组件非受控组件:数据只保存在内部state中;受控组件
- c++ stl库有哪些技术
C++ 老炮儿的技术栈
c++算法学习笔记c++
C++STL(标准模板库)包含以下一些重要技术:容器-序列容器:如vector(动态数组),支持快速随机访问和尾部插入/删除;list(双向链表),适合频繁的插入和删除操作;deque(双端队列),能在两端高效地进行插入和删除。-关联容器:像map(键值对映射),基于红黑树实现,提供快速的查找、插入和删除操作;set(集合),同样基于红黑树,元素唯一且有序。迭代器提供了一种统一的方式来访问容器中的
- 架构演进的方式
pumpkin84514
架构设计架构
架构演进过程中,常用的三种模式是拆迁者模式、绞杀者模式和修缮者模式。它们代表了三种不同的演进路径,适用于不同的业务环境和技术场景。下面详细解释每种模式的内容、使用场景,并对比它们的差异。1.拆迁者模式内容拆迁者模式(也称为重建模式)是一种彻底重构现有系统的方式。通常,在这种模式下,原有系统被完全放弃,并用一个全新的系统替代。在这种情况下,架构和代码需要从头开始重新设计和实现。使用场景系统老化严重:
- HTML5响应式使用css媒体查询
前段技术人
html5css媒体
HTML负责搭建页面结构,CSS负责样式设计,并且通过媒体查询实现了较好的响应式效果,能够适应不同屏幕尺寸下面就是写了一个详细的实例。CSS部分*{margin:0;padding:0;box-sizing:border-box;}*是通配选择器,会选中页面上的所有元素。margin:0;将所有元素的外边距设置为0。padding:0;将所有元素的内边距设置为0。box-sizing:border
- OpenCV图像拼接(2)基于羽化(feathering)技术的图像融合算法拼接类cv::detail::FeatherBlender
村北头的码农
OpenCVopencv算法人工智能
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述cv::detail::FeatherBlender是OpenCV中用于图像拼接的一个类,它属于stitching模块的一部分。这个类实现了基于羽化(feathering)技术的图像融合算法,用于平滑地混合重叠区域中的图像,从而生成无缝的全景图。主要特点羽化技术:
- Python Textract库:文本提取
程序员喵哥
python开发语言
更多Python学习内容:ipengtao.comTextract是一个强大的Python库,用于从各种文件格式中提取文本。无论是PDF、Word文档、Excel电子表格、HTML页面还是图像,Textract都能有效地提取其中的文本内容。Textract通过集成多种开源工具和库,实现了对多种文件格式的支持,使得文本提取变得简单而高效。本文将详细介绍Textract库的安装、主要功能、基本操作、高
- 一个比Fiddler/Charles更好用的免费抓包神器
金丝猴也是猿
httpudphttpswebsocket网络安全网络协议tcp/ip
Proxyman与Sniffmaster:抓包工具的双剑合璧在当今的网络开发与调试中,抓包工具是不可或缺的利器。无论是前端开发者、后端工程师,还是安全研究人员,都需要通过抓包工具来分析网络请求、调试接口、排查问题。今天,我们将介绍两款强大的抓包工具:Proxyman和Sniffmaster,它们各自拥有独特的功能,能够帮助你在不同的场景下高效完成工作。Proxyman简介Slogan:只是简单地点
- python学智能算法(八)|决策树
西猫雷婶
人工智能python学习笔记机器学习python决策树开发语言
【1】引言前序学习进程中,已经对KNN邻近算法有了探索,相关文章链接为:python学智能算法(七)|KNN邻近算法-CSDN博客但KNN邻近算法有一个特点是:它在分类的时候,不能知晓每个类别内事物的具体面貌,只能获得类别,停留在事物的表面。为了进一步探索事物的内在特征,就需要学习新的算法。本篇文章就是在KNN的基础上学习新算法:决策树。【2】原理分析在学习决策树执之前,需要先了解香农熵。本科学控
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite