- 数据分析-18-时间序列分析的季节性检验
皮皮冰燃
数据分析数据分析
1什么是时间序列时间序列是一组按时间顺序排列的数据点的集合,通常以固定的时间间隔进行观测。这些数据点可以是按小时、天、月甚至年进行采样的。时间序列在许多领域中都有广泛应用,例如金融、经济学、气象学和工程等。时间序列的分析可以帮助我们理解和预测未来的趋势和模式,以及了解数据的周期性、趋势、季节性等特征。常用的时间序列分析方法包括平滑法、回归分析、ARIMA模型、指数平滑法和机器学习方法等。1.1时间
- 时间序列分析技巧(二):ARIMA模型建模步骤总结
小墨&晓末
时间序列分析算法机器学习人工智能程序人生
CSDN小墨&晓末:https://blog.csdn.net/jd1813346972 个人介绍:研一|统计学|干货分享 擅长Python、Matlab、R等主流编程软件 累计十余项国家级比赛奖项,参与研究经费10w、40w级横向文章目录1目的2ARIMA模型建模流程图解3ARIMA模型建模实操1目的 该篇为针对时间序列ARIMA模型建模系列技巧:ARIMA模型
- 网络安全最新SARIMA季节项时间序列分析流程+python代码
2401_84301389
程序员python人工智能机器学习
文章目录数据流程流程分割1画图2季节项和周期项的去除3平稳性检验4白噪声检验5模型拟合6模型定阶AIC/BIC准则7检查残差是否通过检验7.1若通过检验7.2若未通过检验8模型的预测9模型的评价画图均方差等总的代码参考数据数据网站:NationalAeronauticsandSpaceAdministrationGoddardInstituteforSpaceStudies主要分析的是北美陆地表面
- 深度学习基础之循环神经网络
Ctrl+CV九段手
机器学习和深度学习rnn深度学习神经网络人工智能机器学习学习
目录基本概念与特点定义与工作原理结构组成应用领域自然语言处理语音识别时间序列分析优缺点优点缺点改进方法总结循环神经网络在自然语言处理中的最新应用和研究进展是什么?长短期记忆网络(LSTM)与门控循环单元(GRU)在解决梯度消失和爆炸问题上的具体差异和优势是什么?LSTM的结构与优势GRU的结构与优势具体差异门的数量:计算复杂度:性能对比:总结双向循环神经网络如何增强模型的上下文捕捉能力,与单向RN
- python金融数据分析与挖掘实战 黄恒秋_金融数据分析与挖掘——股票时间序列数据处理...
weixin_39849930
黄恒秋
1、什么是时间序列分析时间序列分析(timeseriesanalysis)方法,强调的是通过对一个区域进行一定时间段内的连续观察计算,提取相关特征,并分析其变化过程。时间序列分析主要有确定性变化分析和随机性变化分析确定性变化分析:移动平均法,移动方差和标准差、移动相关系数随机性变化分析:AR、ARMA模型2、移动平均法2.1移动窗口主要用在时间序列的数组变换,不同作用的函数将它们统称为移动窗口函数
- 用Python实现时间序列模型实战——00.学习内容及计划
写代码的M教授
时间序列模型python学习开发语言
学习目标理解时间序列数据的基本概念和特性。掌握常用的时间序列分析方法和模型,包括移动平均模型(MA)、自回归模型(AR)、自回归滑动平均模型(ARMA)、自回归积分滑动平均模型(ARIMA)、季节性自回归积分滑动平均模型(SARIMA)、指数平滑法、状态空间模型等。学习如何进行时间序列的模型评估和预测。实践时间序列分析和预测的典型案例。学习时长共计6周,每周5天学习时间(周末休息或复习)。第1周:
- 深度学习--RNN以及RNN的延伸
Ambition_LAO
深度学习rnn
循环神经网络(RecurrentNeuralNetwork,RNN)是一类能够处理序列数据的神经网络,在自然语言处理、时间序列分析等任务中得到了广泛应用。RNN能够通过其内部的循环结构,捕捉到序列中前后项之间的关系。下面我将从原理、作用、应用及代码四个方面详细阐述RNN及其延伸。1.RNN的原理1.1RNN的基本结构RNN的基本结构与传统的前馈神经网络(如全连接网络)不同,它具备一种时间维度上的“
- 互联网加竞赛 大数据分析:基于时间序列的股票预测于分析
Mr.D学长
pythonjava
1简介Hi,大家好,这里是丹成学长,今天向大家介绍一个大数据项目大数据分析:基于时间序列的股票预测于分析2时间序列的由来提到时间序列分析技术,就不得不说到其中的AR/MA/ARMA/ARIMA分析模型。这四种分析方法的共同特点都是跳出变动成分的分析角度,从时间序列本身出发,力求得出前期数据与后期数据的量化关系,从而建立前期数据为自变量,后期数据为因变量的模型,达到预测的目的。来个通俗的比喻,大前天
- Python 3 时间序列可视化指南
张无忌打怪兽
Pythonpython开发语言
简介时间序列分析属于统计学的一个分支,涉及对有序的、通常是时间性的数据进行研究。当适当应用时,时间序列分析可以揭示意想不到的趋势,提取有用的统计数据,甚至预测未来的趋势。因此,它被应用于许多领域,包括经济学、天气预报和容量规划等。在本教程中,我们将介绍时间序列分析中使用的一些常见技术,并逐步介绍操作、可视化时间序列数据所需的迭代步骤。先决条件本指南将介绍如何在本地桌面或远程服务器上进行时间序列分析
- 探秘时间序列分析:解锁时光之门
洞深视界
算法python人工智能机器学习深度学习gitwindows
欢迎来到时间序列分析的世界!时间序列是我们生活中无处不在的,从股票价格到气象数据再到心率变化,时间序列分析帮助我们理解并预测这些数据背后的规律和趋势。今天,让我们一同踏上这段充满探索的旅程,解锁时光之门,揭开时间序列分析的神秘面纱。背景:时间的魔力时间是一种神奇的存在,它记录着万物的变迁和演化。时间序列分析就像是一把时光的钥匙,可以帮助我们打开时间的密码,洞悉时间的规律。无论是经济领域的股票价格预
- python 的statsmodels库如何使用,有哪些功能
openwin_top
python编程示例系列python机器学习回归
Statsmodels是Python的一个统计分析库,它提供了许多用于统计建模和分析的函数和类。下面是一些statsmodels库的使用方法和功能:线性回归:statsmodels库可以用于线性回归建模,可以对数据进行拟合,计算参数的置信区间和p值,还可以进行预测。可以使用ols函数来拟合线性回归模型。时间序列分析:statsmodels库提供了许多用于时间序列分析的函数和类,包括ARIMA、VA
- statsmodels专栏4——深度解析:Python中的Statsmodels库时间序列分析
theskylife
数据分析数据挖掘python开发语言数据分析时间序列数据挖掘
时间序列分析在数据科学领域中占据着重要地位,它不仅帮助我们理解数据的趋势和模式,还能够提供对未来趋势的预测。在众多时间序列分析工具中,Python中的Statsmodels库以其强大的功能和灵活性备受青睐。本文将深入探讨Statsmodels库在时间序列分析中的应用,聚焦于移动平均模型(MA)、自回归模型(AR)以及ARIMA模型,带你领略Statsmodels的精妙之处。写在开头时间序列分析是一
- python毕设选题 - 基于时间序列的股票预测于分析
DanCheng-studio
毕业设计python毕设
文章目录1简介2时间序列的由来2.1四种模型的名称:3数据预览4理论公式4.1协方差4.2相关系数4.3scikit-learn计算相关性5金融数据的时序分析5.1数据概况5.2序列变化情况计算最后1简介Hi,大家好,今天向大家介绍一个大数据项目大数据分析:基于时间序列的股票预测于分析2时间序列的由来提到时间序列分析技术,就不得不说到其中的AR/MA/ARMA/ARIMA分析模型。这四种分析方法的
- Pandas文本数据处理技术指南—从查找到时间序列分析【第66篇—python:文本数据处理】
一见已难忘的申公豹
pandaspython开发语言文本数据数据分析时间序列
文章目录Pandas文本数据处理技术指南引言1.查找文本数据2.替换文本数据3.拼接文本数据4.正则表达式操作5.虚拟变量6.处理缺失值7.分割文本数据8.字符串处理方法9.文本数据的合并与连接10.文本数据的排序11.文本数据的统计分析12.文本数据的分组与聚合13.文本数据的自定义函数应用14.文本数据的时间序列分析心得总结Pandas文本数据处理技术指南引言在数据分析和机器学习领域,文本数据
- Python datetime 模块的高级应用
盗理者
Pythonpythonlinux开发语言
Pythondatetime模块的高级应用介绍方法时区处理日期格式化日期计算常见问题及解决方案代码日历应用时间序列分析介绍datetime模块是Python中用于处理日期和时间的标准库模块。它提供了日期和时间类型(date、time、datetime)以及与日期和时间相关的各种操作函数。以下是一些datetime模块的高级应用。方法这个模块的方法介绍:方法描述now()返回当前日期和时间。comb
- LSTM进行时间序列预测还有哪些创新点,有什么推荐的好发论文的模型和代码?
电力系统爱好者
lstm人工智能rnn
LSTM进行时间序列预测还有哪些创新点,有什么推荐的好发论文的模型和代码?时间序列分析是处理时间相关数据的一种方法,常用于预测、趋势分析和模式识别等应用。下面是一些常见的时间序列分析方法和相应的MATLAB代码示例:移动平均法:%计算简单移动平均data=[1,2,3,4,5,6];windowSize=3;movingAverage=movmean(data,windowSize);自回归模型(
- 严恭敏 matlab,惯性仪器测试与数据分析 [严恭敏 编] 2012年版
洋溢最棒
严恭敏matlab
惯性仪器测试与数据分析作者:严恭敏编出版时间:2012年版内容简介《惯性仪器测试与数据分析》比较系统和全面地介绍了陀螺仪、加速度计和惯导系统的测试原理以及典型的数据分析方法。全书内容可大致分为三个部分:①惯性器件测试部分,介绍了几种常见惯性器件的工作原理和误差建模、惯性器件测试的基本原理和方法以及实验室中常用的惯性仪器测试设备;②数据分析部分,包括回归分析、时间序列分析、频谱分析、阿仑方差分析和随
- 清醒和非快速眼动睡眠EEG微状态序列的频率分析
茗创科技
摘要大多数脑电(EEG)微状态分析都是在清醒状态下进行数据采集,而现有的睡眠研究主要集中在空间微状态特性的变化以及相邻时间点之间的微状态转换上,睡眠状态下脑电微状态研究尚且不足。本研究旨在对清醒和非快速眼动(NREM)睡眠阶段的非平滑EEG微状态序列进行更广泛的时间序列分析。对不同的时间尺度采用不同的分析方法,短时间尺度可以采用马尔可夫检验来评估,中间时间尺度可以用熵率来评估,长时间尺度可以用频谱
- 重标极差分析 Hurst指数计算
独孤尚亮dugushangliang
Python遥感python
在时间序列分析中,有时候会用到hurst指数,今天分享Hurst指数的计算方法。1介绍本节介绍出自《地理数学方法:基础和应用》一书【第21章时间序列的R/S分析】R/S分析是一种基于长程相关思想的时间序列分析方法。这种方法由H.E.Hurst于1965年最先提出,后来伴随着非线性理论的发展而成长起来。Hurst原本是剑桥大学物理学博士,对埃及尼罗河(Nile)进行了长达60年的观测,记录了尼罗河水
- python常用pandas函数nlargest / nsmallest及其手动实现
Hann Yang
Pythonpythonpandas
目录pandas库Series和DataFramenlargest和nsmallest用法示例代替方法手动实现模拟代码pandas库是Python中一个非常强大的数据处理库,提供了高效的数据分析方法和数据结构。它特别适用于处理具有关系型数据或带标签数据的情况,同时在时间序列分析方面也有着出色的表现。pandas库广泛应用于数据挖掘和分析、金融和经济分析、科学和工程计算等领域。使用pandas库可以
- 2024美赛E题数学建模思路代码数据分享
千千小屋grow
数学建模
2024ICMProblemE:SustainabilityofPropertyInsurance本题要求选取不同大陆上经历极端天气的两个地区来为保险公司开发模型,本题的重点是找到尽可能多而全的数据,包括天气数据,经济数据,人口数据等。模型选择:对于气候:l根据历史的气候数据,对未来的极端天气进行预测(时间序列分析),可以利用季节性ARIMA,长短期记忆网络(LSTM),向量自回归(VAR)模型等
- 《Pandas 简易速速上手小册》第6章:Pandas 时间序列分析(2024 最新版)
江帅帅
《Pandas简易速速上手小册》pandaspython机器学习numpy人工智能mysql数据挖掘
文章目录6.1时间序列数据基础6.1.1基础知识6.1.2重点案例:股票市场分析6.1.3拓展案例一:温度变化分析6.1.4拓展案例二:电商平台日销售额分析6.2日期与时间功能6.2.1基础知识6.2.2重点案例:活动日志分析6.2.3拓展案例一:工作日计算6.2.4拓展案例二:股票市场交易日数据重采样6.3时间序列的高级应用6.3.1基础知识6.3.2重点案例:金融市场趋势分析6.3.3拓展案例
- 《Numpy 简易速速上手小册》第1章:Numpy 基础(2024 最新版)
江帅帅
《Numpy简易速速上手小册》numpy
文章目录1.1创建和操作Numpy数组1.1.1基础知识1.1.2完整案例:多维数据分析1.1.3拓展案例1:时间序列数据1.1.4拓展案例2:图像数据处理1.2数组的索引和切片1.2.1基础知识1.2.2完整案例:时间序列分析1.2.3拓展案例1:多维数据访问1.2.4拓展案例2:多条件筛选1.3数学运算基础1.3.1基础知识1.3.2完整案例:数据标准化1.3.3拓展案例1:二维数组的运算1.
- LSTM时间序列数据训练+预测的基本实现
在半岛铁盒里
数学建模lstm人工智能深度学习
文章目录前言实现数据集代码流程完整代码前言最近数模比赛中经常遇到时间序列预测的问题,奈何在比赛中没有时间细细了解,导致总是匆匆忙忙一个ARIMA时间序列分析就糊弄过去了。趁有空学习和总结一下实现思路。实现简单起见,先考虑用一个特征预测Y的情况(即只用标签本身预测)。数据集数据集:GoogleStockPrizeof10years谷歌股票数据集下载:https://www.kaggle.com/da
- Python实现时间序列分析马尔可夫切换自回归模型(MarkovAutoregression算法)项目实战
胖哥真不错
机器学习pythonpython机器学习时间序列分析马尔可夫切换自回归模型项目实战
说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。1.项目背景时间序列分析中的马尔可夫切换自回归模型(MarkovSwitchingAutoregressionModel,简称MSAR或MarkovAutoregression算法)是一种混合了自回归模型(AutoregressiveModel,AR)和马尔可夫链(MarkovC
- Python实现时间序列分析马尔可夫切换动态回归模型(MarkovRegression算法)项目实战
胖哥真不错
机器学习pythonpython机器学习时间序列分析马尔可夫切换动态回归模型项目实战
说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。1.项目背景时间序列分析中的马尔可夫切换动态回归模型(MarkovSwitchingDynamicRegressionModel,MSDRM或简称为MarkovRegression算法)是一种用于处理具有非平稳性和隐藏状态依赖性的时序数据的方法。在该模型中,数据生成过程被认为是在
- Python实现时间序列分析季节性自回归综合移动平均外生回归模型(SARIMAX算法)项目实战
胖哥真不错
机器学习pythonpython时间序列分析季节性自回归综合移动平均外生回归模型SARIMAX项目实战
说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。1.项目背景时间序列分析中的季节性自回归综合移动平均外生回归模型(SeasonalAutoregressiveIntegratedMovingAveragewitheXogenousregressors,SARIMAX)是一种统计建模技术,用于分析和预测具有季节性、趋势以及可能受
- Python实现时间序列分析AR定阶自回归模型(ar_select_order算法)项目实战
胖哥真不错
机器学习pythonpython机器学习时间序列分析AR定阶自回归模型ar_select_order项目实战
说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。1.项目背景时间序列分析中,AR定阶自回归模型(ARorderselection)是指确定自回归模型(AutoRegressiveModel,AR模型)的阶数p的过程。在AR(p)模型中,当前的时间序列值被表示为过去p个时期的线性组合加上一个误差项。ar_select_order
- 精通Python第12篇—深入Pandas从基础到高级的数据处理艺术
申公豹本豹
pythonpandas开发语言excel
文章目录引言Pandas简介安装Pandas读取Excel文件数据操作示例:计算平均值示例:筛选数据写入Excel文件实例:读取并写入新表格数据清洗与转换缺失值处理数据类型转换分组与聚合数据可视化进一步学习高级功能与进阶应用多表关联与合并时间序列分析自定义函数应用性能优化与大数据处理持续学习与实践结语引言在日常的数据处理工作中,我们经常会面临需要从Excel中读取数据并进行进一步操作的任务。Pyt
- AAAI‘2024时间序列论文汇总!预测、分类、异常检测和因果发现的最新进展
AI热心分享家
分类数据挖掘人工智能机器学习深度学习
在数据科学领域,时间序列分析一直是研究的热点和难点。随着大数据时代的到来,时间序列数据在各个领域的应用越来越广泛,如金融、气象、健康等。因此,对时间序列的研究具有重要的理论和实践意义。今天就将AAAI'2024会议收录的时间序列论文进行了汇总,涵盖预测、分类、异常检测与因果发现多个方向,大家可以看一看该领域的研究进展和最新成果。1、MSGNet:LearningMulti-ScaleInter-S
- jsonp 常用util方法
hw1287789687
jsonpjsonp常用方法jsonp callback
jsonp 常用java方法
(1)以jsonp的形式返回:函数名(json字符串)
/***
* 用于jsonp调用
* @param map : 用于构造json数据
* @param callback : 回调的javascript方法名
* @param filters : <code>SimpleBeanPropertyFilter theFilt
- 多线程场景
alafqq
多线程
0
能不能简单描述一下你在java web开发中需要用到多线程编程的场景?0
对多线程有些了解,但是不太清楚具体的应用场景,能简单说一下你遇到的多线程编程的场景吗?
Java多线程
2012年11月23日 15:41 Young9007 Young9007
4
0 0 4
Comment添加评论关注(2)
3个答案 按时间排序 按投票排序
0
0
最典型的如:
1、
- Maven学习——修改Maven的本地仓库路径
Kai_Ge
maven
安装Maven后我们会在用户目录下发现.m2 文件夹。默认情况下,该文件夹下放置了Maven本地仓库.m2/repository。所有的Maven构件(artifact)都被存储到该仓库中,以方便重用。但是windows用户的操作系统都安装在C盘,把Maven仓库放到C盘是很危险的,为此我们需要修改Maven的本地仓库路径。
- placeholder的浏览器兼容
120153216
placeholder
【前言】
自从html5引入placeholder后,问题就来了,
不支持html5的浏览器也先有这样的效果,
各种兼容,之前考虑,今天测试人员逮住不放,
想了个解决办法,看样子还行,记录一下。
【原理】
不使用placeholder,而是模拟placeholder的效果,
大概就是用focus和focusout效果。
【代码】
<scrip
- debian_用iso文件创建本地apt源
2002wmj
Debian
1.将N个debian-506-amd64-DVD-N.iso存放于本地或其他媒介内,本例是放在本机/iso/目录下
2.创建N个挂载点目录
如下:
debian:~#mkdir –r /media/dvd1
debian:~#mkdir –r /media/dvd2
debian:~#mkdir –r /media/dvd3
….
debian:~#mkdir –r /media
- SQLSERVER耗时最长的SQL
357029540
SQL Server
对于DBA来说,经常要知道存储过程的某些信息:
1. 执行了多少次
2. 执行的执行计划如何
3. 执行的平均读写如何
4. 执行平均需要多少时间
列名 &
- com/genuitec/eclipse/j2eedt/core/J2EEProjectUtil
7454103
eclipse
今天eclipse突然报了com/genuitec/eclipse/j2eedt/core/J2EEProjectUtil 错误,并且工程文件打不开了,在网上找了一下资料,然后按照方法操作了一遍,好了,解决方法如下:
错误提示信息:
An error has occurred.See error log for more details.
Reason:
com/genuitec/
- 用正则删除文本中的html标签
adminjun
javahtml正则表达式去掉html标签
使用文本编辑器录入文章存入数据中的文本是HTML标签格式,由于业务需要对HTML标签进行去除只保留纯净的文本内容,于是乎Java实现自动过滤。
如下:
public static String Html2Text(String inputString) {
String htmlStr = inputString; // 含html标签的字符串
String textSt
- 嵌入式系统设计中常用总线和接口
aijuans
linux 基础
嵌入式系统设计中常用总线和接口
任何一个微处理器都要与一定数量的部件和外围设备连接,但如果将各部件和每一种外围设备都分别用一组线路与CPU直接连接,那么连线
- Java函数调用方式——按值传递
ayaoxinchao
java按值传递对象基础数据类型
Java使用按值传递的函数调用方式,这往往使我感到迷惑。因为在基础数据类型和对象的传递上,我就会纠结于到底是按值传递,还是按引用传递。其实经过学习,Java在任何地方,都一直发挥着按值传递的本色。
首先,让我们看一看基础数据类型是如何按值传递的。
public static void main(String[] args) {
int a = 2;
- ios音量线性下降
bewithme
ios音量
直接上代码吧
//second 几秒内下降为0
- (void)reduceVolume:(int)second {
KGVoicePlayer *player = [KGVoicePlayer defaultPlayer];
if (!_flag) {
_tempVolume = player.volume;
- 与其怨它不如爱它
bijian1013
选择理想职业规划
抱怨工作是年轻人的常态,但爱工作才是积极的心态,与其怨它不如爱它。
一般来说,在公司干了一两年后,不少年轻人容易产生怨言,除了具体的埋怨公司“扭门”,埋怨上司无能以外,也有许多人是因为根本不爱自已的那份工作,工作完全成了谋生的手段,跟自已的性格、专业、爱好都相差甚远。
- 一边时间不够用一边浪费时间
bingyingao
工作时间浪费
一方面感觉时间严重不够用,另一方面又在不停的浪费时间。
每一个周末,晚上熬夜看电影到凌晨一点,早上起不来一直睡到10点钟,10点钟起床,吃饭后玩手机到下午一点。
精神还是很差,下午像一直野鬼在城市里晃荡。
为何不尝试晚上10点钟就睡,早上7点就起,时间完全是一样的,把看电影的时间换到早上,精神好,气色好,一天好状态。
控制让自己周末早睡早起,你就成功了一半。
有多少个工作
- 【Scala八】Scala核心二:隐式转换
bit1129
scala
Implicits work like this: if you call a method on a Scala object, and the Scala compiler does not see a definition for that method in the class definition for that object, the compiler will try to con
- sudoku slover in Haskell (2)
bookjovi
haskellsudoku
继续精简haskell版的sudoku程序,稍微改了一下,这次用了8行,同时性能也提高了很多,对每个空格的所有解不是通过尝试算出来的,而是直接得出。
board = [0,3,4,1,7,0,5,0,0,
0,6,0,0,0,8,3,0,1,
7,0,0,3,0,0,0,0,6,
5,0,0,6,4,0,8,0,7,
- Java-Collections Framework学习与总结-HashSet和LinkedHashSet
BrokenDreams
linkedhashset
本篇总结一下两个常用的集合类HashSet和LinkedHashSet。
它们都实现了相同接口java.util.Set。Set表示一种元素无序且不可重复的集合;之前总结过的java.util.List表示一种元素可重复且有序
- 读《研磨设计模式》-代码笔记-备忘录模式-Memento
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
/*
* 备忘录模式的功能是,在不破坏封装性的前提下,捕获一个对象的内部状态,并在对象之外保存这个状态,为以后的状态恢复作“备忘”
- 《RAW格式照片处理专业技法》笔记
cherishLC
PS
注意,这不是教程!仅记录楼主之前不太了解的
一、色彩(空间)管理
作者建议采用ProRGB(色域最广),但camera raw中设为ProRGB,而PS中则在ProRGB的基础上,将gamma值设为了1.8(更符合人眼)
注意:bridge、camera raw怎么设置显示、输出的颜色都是正确的(会读取文件内的颜色配置文件),但用PS输出jpg文件时,必须先用Edit->conv
- 使用 Git 下载 Spring 源码 编译 for Eclipse
crabdave
eclipse
使用 Git 下载 Spring 源码 编译 for Eclipse
1、安装gradle,下载 http://www.gradle.org/downloads
配置环境变量GRADLE_HOME,配置PATH %GRADLE_HOME%/bin,cmd,gradle -v
2、spring4 用jdk8 下载 https://jdk8.java.
- mysql连接拒绝问题
daizj
mysql登录权限
mysql中在其它机器连接mysql服务器时报错问题汇总
一、[running]
[email protected]:~$mysql -uroot -h 192.168.9.108 -p //带-p参数,在下一步进行密码输入
Enter password: //无字符串输入
ERROR 1045 (28000): Access
- Google Chrome 为何打压 H.264
dsjt
applehtml5chromeGoogle
Google 今天在 Chromium 官方博客宣布由于 H.264 编解码器并非开放标准,Chrome 将在几个月后正式停止对 H.264 视频解码的支持,全面采用开放的 WebM 和 Theora 格式。
Google 在博客上表示,自从 WebM 视频编解码器推出以后,在性能、厂商支持以及独立性方面已经取得了很大的进步,为了与 Chromium 现有支持的編解码器保持一致,Chrome
- yii 获取控制器名 和方法名
dcj3sjt126com
yiiframework
1. 获取控制器名
在控制器中获取控制器名: $name = $this->getId();
在视图中获取控制器名: $name = Yii::app()->controller->id;
2. 获取动作名
在控制器beforeAction()回调函数中获取动作名: $name =
- Android知识总结(二)
come_for_dream
android
明天要考试了,速速总结如下
1、Activity的启动模式
standard:每次调用Activity的时候都创建一个(可以有多个相同的实例,也允许多个相同Activity叠加。)
singleTop:可以有多个实例,但是不允许多个相同Activity叠加。即,如果Ac
- 高洛峰收徒第二期:寻找未来的“技术大牛” ——折腾一年,奖励20万元
gcq511120594
工作项目管理
高洛峰,兄弟连IT教育合伙人、猿代码创始人、PHP培训第一人、《细说PHP》作者、软件开发工程师、《IT峰播》主创人、PHP讲师的鼻祖!
首期现在的进程刚刚过半,徒弟们真的很棒,人品都没的说,团结互助,学习刻苦,工作认真积极,灵活上进。我几乎会把他们全部留下来,现在已有一多半安排了实际的工作,并取得了很好的成绩。等他们出徒之日,凭他们的能力一定能够拿到高薪,而且我还承诺过一个徒弟,当他拿到大学毕
- linux expect
heipark
expect
1. 创建、编辑文件go.sh
#!/usr/bin/expect
spawn sudo su admin
expect "*password*" { send "13456\r\n" }
interact
2. 设置权限
chmod u+x go.sh 3.
- Spring4.1新特性——静态资源处理增强
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- idea ubuntuxia 乱码
liyonghui160com
1.首先需要在windows字体目录下或者其它地方找到simsun.ttf 这个 字体文件。
2.在ubuntu 下可以执行下面操作安装该字体:
sudo mkdir /usr/share/fonts/truetype/simsun
sudo cp simsun.ttf /usr/share/fonts/truetype/simsun
fc-cache -f -v
- 改良程序的11技巧
pda158
技巧
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。
让我们看一些基本的编程技巧:
尽量保持方法简短
永远永远不要把同一个变量用于多个不同的
- 300个涵盖IT各方面的免费资源(下)——工作与学习篇
shoothao
创业免费资源学习课程远程工作
工作与生产效率:
A. 背景声音
Noisli:背景噪音与颜色生成器。
Noizio:环境声均衡器。
Defonic:世界上任何的声响都可混合成美丽的旋律。
Designers.mx:设计者为设计者所准备的播放列表。
Coffitivity:这里的声音就像咖啡馆里放的一样。
B. 避免注意力分散
Self Co
- 深入浅出RPC
uule
rpc
深入浅出RPC-浅出篇
深入浅出RPC-深入篇
RPC
Remote Procedure Call Protocol
远程过程调用协议
它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议。RPC协议假定某些传输协议的存在,如TCP或UDP,为通信程序之间携带信息数据。在OSI网络通信模型中,RPC跨越了传输层和应用层。RPC使得开发