上帝会掷骰子吗?量子物理史话

这本书从开始到读完,整整经历了半年时间,虽然作者表示具备小学数学和初中物理基础的孩子都可以阅读,但将大学物理差不多还给老师的我表示,没有复习大学物理,很多看得不太明白,阅读难度系数比较大!但对量子科技的好奇心驱使我坚持读完整本书,而且对科学家孜孜不倦的科学探索和生活化描写,使得科技进步不是冷冰冰的公式符号,不是深奥复杂的大学教材,而是有血有肉、波澜壮阔的人类进步奋斗史,是对美丽而又神秘的宇宙万物的大探险。最后的读书笔记编写更是让我理清了脉络,虽然这也非常的伤脑筋,以至于只摘录完前世篇,而今生篇待以后理解更深入了再完成。

可以说本书激发了我对量子科学进一步探索的兴趣,想去深入了解量子加密、量子通信、量子计算机等未来学科。因为未来在量子科技革命的影响下,变化将是巨大的,神奇的!如果对这种变化一知半解,无疑是蒙昧的,好像现在有年轻人不会用手机一样。

量子论自1925年创立以来,到那时为止已经经历了近60年的风风雨雨,它在每一个领域都显示出了如此强大的力量,没有任何实验结果能够对它提出哪怕一点点的质疑。最伟大的物理学家(如爱因斯坦和薛定谔)向它猛烈开火,试图把它从根本上颠覆掉,可是它的灿烂光辉却反而显得更加耀眼和悦目。

从实用的角度来说,量子论是有史以来最成功的理论,它不但远超相对论和麦克斯韦电磁理论,甚至超越了牛顿的经典力学!量子论是从风雨飘摇的乱世中成长起来的,久经革命考验的战士,它的气质在风刀霜剑的严相逼拷之下被磨砺得更加坚韧而不可战胜。

量子力学作为20世纪物理史上最重要的成就之一,到今天为止它的基本数学形式已经被创立了将近整整80年。它在每一个领域内都取得了巨大的成功,以致和相对论一起成为了支撑物理学的两大支柱。

量子论的出现彻底改变了世界的面貌,它比史上任何一种理论都引发了更多的技术革命。核能、计算机技术、新材料、能源技术、信息技术……这些都在根本上和量子论密切相关。牵强一点说,如果没有足够的关于弱相互作用力和晶体衍射的知识,DNA的双螺旋结构也就不会被发现,分子生物学也就无法建立,也就没有如今这般火热的生物技术革命。再牵强一点说,没有量子力学,也就没有欧洲粒子物理中心(CERN),而没有CERN,也就没有互联网的www服务,更没有划时代的网络革命。

然而事实是量子概念的诞生已经超过整整100年,不可思议的是,它的一些基本思想却至今不为普通的大众所熟知。


牛顿、托马斯•杨、菲涅耳

起源要从关于光本质上究竟是什么说起,在17世纪中期有两种可能的假设:微粒说和波动说。

然而在一开始的时候,双方的武装都是非常薄弱的。微粒说固然有着悠久的历史,但是它手中的力量是很有限的。光的直线传播问题和反射折射问题本来是它的传统领地,但波动方面军在发展了自己的理论后,迅速就在这两个战场上与微粒平分秋色。波动论作为一种新兴的理论,格里马第的光衍射实验是它发家的最大法宝,但它却拖着一个沉重的包袱,就是光以太的假设。这个凭空想象出来的媒介,将在很长一段时间里成为波动军队的累赘。

色散实验是牛顿所做的最为有名的实验之一。实验的情景在一些科普读物里被渲染得十分impressive(令人印象深刻的):炎热难忍的夏天,牛顿却戴着厚重的假发待在一间小屋里。窗户全都被封死了,所有的窗帘也被拉上,屋子里面又闷又热,一片漆黑,只有一束亮光从一个特意留出的小孔里面射进来。牛顿不顾身上汗如雨下,全神贯注地在屋里走来走去,并不时地把手里的一个三棱镜插进那个小孔里。每当三棱镜被插进去的时候,原来的那束白光就不见了,而在屋里的墙上,映射出了一条长长的彩色宽带:颜色从红一直到紫。这当然是一种简单得过分的描述,不过正是凭借这个实验,牛顿得出了白色光是由七彩光混合而成的结论。

1704年,牛顿终于出版了他的煌煌巨著《光学》。《光学》是一本划时代的作品,几乎可以与《原理》并列的伟大杰作,在之后整整100年内,它都被奉为不可动摇的金科玉律。牛顿在其中详尽地阐述了光的色彩叠合与分散,从粒子的角度解释了薄膜透光、牛顿环以及衍射实验中发现的种种现象。他驳斥了波动理论,那时的牛顿,已经不再是那个可以被人随便质疑的青年。那时的牛顿,已经是出版了《数学原理》的牛顿,已经是发明了微积分的牛顿。那个时候,他已经是国会议员,造币局局长,皇家学会主席,已经成为科学史上神话般的人物。

在微粒与波动的第一次交锋中,以牛顿为首的微粒说战胜了波动说,取得了在物理界被普遍公认的地位。

转眼间,近一个世纪过去了。牛顿体系的地位已经是如此崇高,令人不禁有一种目眩的感觉。然而1773年6月13日,英国米尔沃顿的一个教徒的家庭里诞生了一个男孩,取名为托马斯•杨。

1807年,托马斯•杨总结出版了他的《自然哲学讲义》,里面综合整理了他在光学方面的工作,并第一次描述了他那个名扬四海的实验:光的双缝干涉。后来的历史证明,这个实验完全可以跻身于物理学史上最经典的前五个实验之列。而在今天,它更是理所当然地出现在每一本中学物理的教科书上。杨的著作点燃了革命的导火索,物理史上的“第二次波粒战争”开始了。

但是在1809年,马吕斯发现的偏振现象,这一现象和已知的波动论有抵触的地方。

决定性的时刻在1819年到来了,菲涅耳采用了光是一种波动的观点,并以严密的数学推理,极为圆满地解释了光的衍射问题。他的体系洋洋洒洒,天衣无缝,完美无缺,令委员会成员为之深深惊叹。泊松并不相信这一结论,对它进行了仔细的审查,结果发现当把这个理论应用于圆盘衍射的时候,在阴影中间将会出现一个亮斑。这在泊松看来是十分荒谬的,影子中间怎么会出现亮斑呢?这差点使得菲涅耳的论文中途夭折。但菲涅耳的同事,评委之一的阿拉果在关键时刻坚持要进行实验检测,结果发现真的有一个亮点如同奇迹一般地出现在圆盘阴影的正中心,位置亮度和理论符合得相当完美,圆盘阴影正中的亮点,后来被相当误导性地称作“泊松亮斑”。

菲涅耳理论的这个胜利成了第二次波粒战争的决定性事件。他获得了那一届的科学奖(GrandPrix),同时一跃成为了可以和牛顿、惠更斯比肩的光学界的传奇人物。菲涅耳不久后又作出了一个石破天惊的决定:他革命性地假设光是一种横波(也就是类似水波那样,振子作相对传播方向垂直运动的波),而不像从胡克以来所一直认为的那样,是一种纵波(类似弹簧波,振子作相对传播方向水平运动的波)。

1821年,菲涅耳发表了题为《关于偏振光线的相互作用》的论文,用横波理论成功地解释了偏振现象,攻克了战役中一个最难以征服的据点。

到了19世纪中期,微粒说挽回战局的唯一希望就是光速在水中的测定结果了。因为根据粒子论,这个速度应该比真空中的光速要快,而根据波动论,这个速度则应该比真空中要慢才对。

1850年5月6日,微粒军团迎来了它的滑铁卢。傅科(他后来以“傅科摆”实验而闻名)向法国科学院提交了他关于光速测量实验的报告。在准确地得出光在真空中的速度之后,他也进行了水中光速的测量,发现这个值小于真空中的速度,只有前者的3/4。这一结果彻底宣判了微粒说的死刑,波动论终于在100多年后革命成功,推翻了微粒王朝,登上了物理学统治地位的宝座。在胜利者盛大的加冕典礼中,第二次波粒战争随着微粒的战败而尘埃落定。

但菲涅耳的横波理论却留给波动一个尖锐的难题,就是以太的问题。但是波动说并没有为此困惑多久,因为更加激动人心的胜利很快就到来了。伟大的麦克斯韦发表了三篇关于电磁理论的论文,并于1865年预言光其实只是电磁波的一种。而电磁理论则要从法拉第说起。


法拉第、麦克斯韦、赫兹

1831年10月17日,迈克尔·法拉第,世界著名的自学成才的科学家,英国物理学家、化学家,首次发现电磁感应现象,并进而得到产生交流电的方法。1831年10月28日法拉第发明了圆盘发电机,是人类创造出的第一个发电机。由于他在电磁学方面做出了伟大贡献,被称为“电学之父”和“交流电之父”。

詹姆斯·克拉克·麦克斯韦,在前人成就的基础上,对整个电磁现象作了系统、全面的研究,凭借他高深的数学造诣和丰富的想象力接连发表了电磁场理论的三篇论文:《论法拉第的力线》(1855年12月至1856年2月);《论物理的力线》(1861至1862年);《电磁场的动力学理论》(1864年12月8日)。对前人和他自己的工作进行了综合概括,将电磁场理论用简洁、对称、完美数学形式表示出来,经后人整理和改写,成为经典电动力学主要基础的麦克斯韦方程组

据此,1865年他预言了电磁波的存在,电磁波只可能是横波,并推导出电磁波的传播速度等于光速,同时得出结论:光是电磁波的一种形式,揭示了光现象和电磁现象之间的联系。1873年出版了科学名著《电磁理论》。系统、全面、完美地阐述了电磁场理论。没有电磁学就没有现代电工学,也就不可能有现代文明。

1887年,赫兹揉了揉眼睛,直起腰来:现在一切都清楚了,电磁波真真实实地存在于空间之中,正是它激发了接收器上的电火花。他胜利了,同时,麦克斯韦的理论也胜利了,物理学的一个新高峰——电磁理论终于被建立起来。伟大的法拉第为它打下了地基,伟大的麦克斯韦建造了它的主体,而今天,他——伟大的赫兹——为这座大厦封了顶。赫兹的实验也同时标志着经典物理的顶峰。

罗杰•彭罗斯(RogerPenrose)在他的名著《皇帝新脑》一书里毫不犹豫地将它和牛顿力学,相对论和量子论并列,称之为“Superb”的理论。

在光学的方面,波动已经统一了天下,新的电磁理论更把它的光荣扩大到了整个电磁世界。在热的方面,热力学三大定律已经基本建立(第三定律已经有了雏形),而在克劳修斯、范德瓦尔斯、麦克斯韦、玻尔兹曼和吉布斯等天才的努力下,分子运动论和统计热力学也被成功地建立起来了。更令人惊奇的是,这一切都彼此相符而互相包容,形成了一个经典物理的大同盟。经典力学、经典电动力学和经典热力学(加上统计力学)形成了物理世界的三大支柱。它们紧紧地结合在一块儿,构筑起了一座华丽而雄伟的殿堂,一个经典物理的黄金时代。科学的力量似乎从来都没有这样地强大,这样地令人神往。人们也许终于可以相信,上帝造物的奥秘被他们所完全掌握了,再没有遗漏的地方。从当时来看,我们也许的确是有资格这样骄傲的,因为所知道的一切物理现象,几乎都可以从现成的理论里得到解释。力、热、光、电、磁……一切的一切,都在人们的控制之中,而且所用的居然都是同一种手法。

19世纪末的物理学天空中闪烁着金色的光芒,象征着经典物理帝国的全盛时代。这样的伟大时期在科学史上是空前的,或许也将是绝后的。然而,这个统一的强大帝国却注定了只能昙花一现。

赫兹1887年的电磁波实验的意义应该是复杂而深远的。它一方面彻底建立了电磁场论,为经典物理的繁荣添加了浓重的一笔;在另一方面,它却同时又埋藏下了促使经典物理自身毁灭的武器,孕育出了革命的种子。

在卡尔斯鲁厄大学的那间实验室里,赫兹铜环接收器的缺口之间不停地爆发着电火花,明白无误地昭示着电磁波的存在。但这个火花很黯淡,不容易观察,于是赫兹把它隔离在一个黑暗的环境里。为了使效果尽善尽美,他甚至把发生器产生的那些火花光芒也隔离开来,不让它们干扰到接收器。这个时候,奇怪的现象发生了:当没有光照射到接受器的时候,接收器电火花所能跨越的最大空间距离就一下子缩小了。换句话说,没有光照时,我们的两个小球必须靠得更近才能产生火花。假如我们重新让光(特别是高频光)照射接收器,则电火花的出现就又变得容易起来。

连赫兹自己也不知道,他已经亲手触摸到了量子这个还在沉睡的幽灵,虽然还没能将其唤醒,却已经给刚刚到达繁盛的电磁场论安排下了一个可怕的诅咒。在经典物理还没有来得及多多体味一下自己的盛世前,一连串意想不到的事情在19世纪的最后几年连续发生了,仿佛是一个不祥的预兆。


经典物理学上空的两朵小乌云

1895年,伦琴发现了X射线。1896年,贝克勒尔发现了铀元素的放射现象。1897年,居里夫人和她的丈夫皮埃尔•居里研究了放射性,并发现了更多的放射性元素:钍、钋、镭。1897年,J.J.汤姆逊在研究了阴极射线后认为它是一种带负电的粒子流。电子被发现了。1899年,卢瑟福发现了元素的嬗变现象。

一种山雨欲来的压抑感觉在人们心中扩散。新的世纪很快就要来到,人们不知道即将发生什么,历史将要何去何从。眺望天边,人们隐约可以看到两朵小小的乌云,小得那样不起眼。没人知道,它们即将带来一场狂风暴雨,将旧世界的一切从大地上彻底抹去。而我们,也即将冲进这暴风雨的中心,去看一看那场天崩地坼的革命。

1900年4月27日,伦敦的天气还是有一些阴冷。马路边的咖啡店里,人们兴致勃勃地谈论着当时正在巴黎举办的万国博览会。街上的报童在大声叫卖报纸,那上面正在讨论中国义和团运动最新的局势进展以及各国在北京使馆人员的状况。在阿尔伯马尔街皇家研究所,开尔文正演讲《在热和光动力理论上空的19世纪乌云》,在物理学阳光灿烂的天空中飘浮着两朵小乌云。这两朵著名的乌云,分别指的是经典物理在光以太和麦克斯韦-玻尔兹曼能量均分学说上遇到的难题。再具体一些,指的就是人们在迈克尔逊-莫雷实验黑体辐射研究中的困境。

迈克尔逊-莫雷实验是物理史上最有名的“失败的实验”。它当时在物理界引起了轰动,因为以太这个概念作为绝对运动的代表,是经典物理学和经典时空观的基础。而这根支撑着经典物理学大厦的梁柱竟然被一个实验的结果而无情地否定,那就意味着整个物理世界的轰然崩塌。第一朵乌云,最终导致了相对论革命的爆发。

请诸位做个深呼吸,因为我们的故事终于就要进入正轨。归根到底,这一切的一切,原来都要从那令人困惑的“黑体”开始。这第二朵乌云,最终导致了量子论革命的爆发。

一个物体之所以看上去是白色的,那是因为它反射所有频率的光波;反之,如果看上去是黑色的,那是因为它吸收了所有频率的光波的缘故。物理上定义的“黑体”,指的是那些可以吸收全部外来辐射的物体,比如一个空心的球体,内壁涂上吸收辐射的涂料,外壁上开一个小孔。那么,因为从小孔射进球体的光线无法反射出来,这个小孔看上去就是绝对黑色的,即是我们定义的“黑体”。

实验表明,对于一般材料的物体,辐射电磁波的情况除与温度有关外,还与材料种类及表面状况有关,而黑体辐射电磁波的波长分布只与黑体温度有关,因而反应了某种具有普遍意义的客观规律。

1894年维恩提出了他的辐射能量分布定律公式,但他的分子假设使得经典物理学家们十分地不舒服。因为辐射是电磁波,而大家已经都知道,电磁波是一种波动。用经典粒子的方法去分析,似乎让人感到隐隐地有些不对劲。卢梅尔和普林舍姆于1899年报告,当把黑体加热到1000多K的高温时,测到的短波长范围内的曲线和维恩公式符合得很好,但在长波方面,实验和理论出现了偏差。

瑞利的做法是抛弃玻尔兹曼的分子运动假设,简单地从经典的麦克斯韦理论出发,最终他也得出了自己的公式。后来,另一位物理学家金斯计算出了公式里的常数,最后他们得到的说的瑞利-金斯(Rayleigh-Jeans)公式形式,就从理论上证明了ρ和T在高温长波范围内成正比的实验结果。它在长波方面虽然符合了实验数据,但在短波方面的失败却是显而易见的。

然而,毕竟新世纪的钟声已经敲响,物理学的伟大革命就要到来。


量子的诞生——普朗克

1900年10月19日,普朗克在柏林德国物理学会的会议上,把这个新鲜出炉的公式公诸于众。在长波的时候,它表现得就像正比关系一样。而在短波的时候,它则退化为维恩公式的原始形式。这就是著名的普朗克黑体公式。

普朗克颇有一种破釜沉舟的气概。除了热力学的两个定律他认为不可动摇之外,甚至整个宇宙,他都做好了抛弃的准备。不过,饶是如此,当他终于理解了公式背后所包含的意义之后,他还是惊讶到不敢相信和接受所发现的一切。普朗克当时做梦也没有想到,他的工作绝不仅仅是改变物理学的一些面貌而已。事实上,大半个物理学和整个化学都将被彻底摧毁和重建,一个神话时代即将拉开帷幕。

在种种尝试都失败了以后,普朗克发现,他必须接受他一直不喜欢的统计力学立场,从玻尔兹曼的角度来看问题,把熵和几率引入到这个系统里来。原来普朗克发现,仅仅引入分子运动理论还是不够的。在处理熵和几率的关系时,如果要使得我们的新方程成立,就必须做一个假定:

假设能量在发射和吸收的时候,不是连续不断,而是分成一份一份的。 正是这个假定,推翻了自牛顿以来200多年,曾经被认为是坚固不可摧毁的经典世界,彻底改变了自古以来人们对世界的最根本的认识。因为自从伽利略和牛顿用数学规则驯服了大自然之后,一切自然的过程就都被当成是连续不间断的。这种连续性,平滑性的假设,是微积分的根本基础。牛顿、麦克斯韦那庞大的体系,便建筑在这个地基之上,度过了百年的风雨。

1900年12月14日,人们还在忙活着准备欢度圣诞节。这一天,普朗克在德国物理学会上发表了他的大胆假设。他宣读了那篇名留青史的《黑体光谱中的能量分布》的论文,其中改变历史的是这段话:为了找出N个振子具有总能量Un的可能性,我们必须假设Un是不可连续分割的,它只能是一些相同部件的有限总和……

这个基本单位,普朗克把它称作“能量子”(Energieelement),但随后很快,在另一篇论文里,他就改称为“量子”(Elementarquantum),英语就是quantum。这个单词来自拉丁文quantus,本来的意思就是“多少”“量”。量子就是能量的最小单位,就是能量里的一美分,一切能量的传输,都只能以这个量为单位来进行。

这个最小单位究竟是多少呢?从普朗克的方程里可以容易地推算出答案:它等于一个常数乘以特定辐射的频率。用一个简明的公式来表示:其中E是单个量子的能量,ν是频率。那个h就是神秘的量子常数,以它的发现者命名,称为“普朗克常数”。它约等于6.626×10-27尔格•秒,也就是6.626×10-34焦耳•秒。这个值,正如我们以后将要看到的那样,原来竟是构成我们整个宇宙最为重要的3个基本物理常数之一(另两个是引力常数G和光速c)。

请各位记住1900年12月14日这个日子,这一天就是量子的诞辰。

这个幽灵是如此地具有革命性和毁坏性,以至于它所过之处,最富丽堂皇的宫殿都在瞬间变成了断瓦残垣。物理学构筑起来的精密体系被毫不留情地砸成废铁,千百年来亘古不变的公理被扔进垃圾箱中不得翻身。它所带来的震撼力和冲击力是如此地大,以至于后来它的那些伟大的开创者们都惊吓不已,纷纷站到了它的对立面。当然,它也决不仅仅是一个破坏者,它更是一个前所未有的建设者。科学史上最杰出的天才们参与了它成长中的每一步,赋予了它华丽的性格和无可比拟的力量,人类理性最伟大的构建终将在它的手中诞生。

一场前所未有的革命已经到来,一场最为反叛和彻底的革命,也是最具有传奇和史诗色彩的革命。暴风雨的种子已经在乌云的中心酿成,只等适合的时候,便要催动起史无前例的雷电和风暴,向世人昭示它的存在。而这一切,都是从那个叫做马克斯•普朗克的男人那里开始的。普朗克以一种那个时代非常难得的开创性态度来对待黑体的难题,他为后来的人打开了一扇通往全新未知世界的大门。

自从量子革命以来,学者们越来越多地认识到,空间不一定能够这样无限分割下去。量子效应使得空间和时间的连续性丧失了,芝诺所连续无限次分割的假设并不能够总是成立。这样一来,芝诺悖论便不攻自破了。量子论告诉我们,“无限分割”的概念是一种数学上的理想,而不可能在现实中实现。一切都是不连续的,连续性的美好蓝图,也许不过是我们的一种想象。

牛顿的体系闪耀着神圣不可侵犯的光辉,从诞生的那刻起便有着一种天上地下唯我独尊的气魄。麦克斯韦的方程组简洁深刻,倾倒众生,被誉为上帝谱写的诗歌。爱因斯坦的相对论虽然是平民出身,但骨子里却继承着经典体系的贵族优雅气质,它的光芒稍经发掘后便立即照亮了整个时代。

但量子论却不同,量子论的成长史,更像是一部艰难的探索史,其中的每一步,都充满了陷阱、荆棘和迷雾。量子的诞生伴随着巨大的阵痛,它的命运注定了将要起伏而多舛,甚至一直到今天,它还在与反对者们不懈地搏斗。量子论的思想是如此反叛和躁动,以至于它与生俱来地有着一种对抗权贵的平民风格;而它显示出来的潜在力量又是如此地巨大而近乎无法控制,这一切使得所有的人都对它怀有深深的惧意。而在这些怀有戒心的人们中间,最有讽刺意味的就要算量子的创始人:普朗克自己了。

这个思想,一直要到1915年,当玻尔的模型取得了空前的成功后,才在普朗克的脑海中扭转过来。量子论就像神话中的英雄海格力斯(Hercules),一出生就被抛弃在荒野里,命运更为他安排了重重枷锁。他的所有荣耀,都要靠自己那非凡的力量和一系列艰难的斗争来争取。作为普朗克本人来说,他从一个革命的创始者而最终走到了时代的反面,没能在这段振奋人心的历史中起到更多的积极作用,这无疑是十分遗憾的。

量子论不像牛顿力学或者爱因斯坦相对论,它的身上没有天才的个人标签,相反,整整一代精英共同促成了它的光荣。

好戏也该上演了。


爱因斯坦奠基量子论

当光照射到金属上的时候,会从它的表面打出电子来。对于光与电之间存在的这种饶有趣味的现象,人们给它取了一个名字,叫做“光电效应”。总而言之,对于特定的金属,能不能打出电子,由光的频率说了算。而打出多少电子,则由光的强度说了算。1905年,在瑞士的伯尔尼专利局,一位26岁的小公务员,三等技师职称,留着一头乱蓬蓬头发的年轻人把他的眼光在光电效应的这个问题上停留了一下。这个人的名字叫做阿尔伯特•爱因斯坦

对于科学界来说,伯尔尼的专利局却意味着许多。它在现代科学史上的意义,不啻于伊斯兰文化中的麦加城,有一种颇为神圣的光辉在里边。这都是因为在100年前,这个专利局“很有眼光”地雇用了一位小职员,他的名字就叫做阿尔伯特•爱因斯坦。这个故事再一次告诉我们,小庙里面有时也会出大和尚。

爱因斯坦每天在他的办公室里工作8个小时,摆弄那堆形形色色的专利图纸,然后他赶回家,推着婴儿车到伯尔尼的马路上散步。空下来的时候,他和朋友们聚会,大家兴致勃勃地讨论休谟、斯宾诺莎和莱辛。要是突然心血来潮了,爱因斯坦便拿出他的那把小提琴,给大家表演或是伴奏。当然,更多的时候,他还是钻研最感兴趣的物理问题,陷入沉思后,往往废寝忘食。

1905年的一系列奇迹是从3月17日开始的。那一天,爱因斯坦写出了一篇关于辐射的论文,它后来发表在《物理学纪事》杂志上,题目叫做《关于光的产生和转化的一个启发性观点》。这篇文章仅仅是爱因斯坦有生以来发表的第6篇正式论文,而就是这篇论文,将给他带来多少人终生梦寐以求的诺贝尔奖,也开创了属于量子论的一个全新时代。

E=hʋ,提高频率,不正是提高单个量子的能量吗?而更高能量的量子,不正好能够打击出更高能量的电子吗?另一方面,提高光的强度,只是增加量子的数量罢了,所以相应的结果自然是打击出更多数量的电子!根据这种假设,从一点所发出的光线在不断扩大的空间中传播时,它的能量不是连续分布的,而是由一些数目有限,局限于空间中某个地点的‘能量子’(energyquanta)所组成的。这些能量子是不可分割的,它们只能整份地被吸收或发射。”组成光的能量的这种最小的基本单位,爱因斯坦后来把它们叫做“光量子”(lightquanta)。一直到了1926年,美国物理学家刘易斯(G.N.Lewis)才把它换成了今天常用的名词,叫做“光子”(photon)。

光量子是一个非常大胆的假设,它是在直接地向经典物理体系挑战。光量子和传统的电磁波动图像显得格格不入。它其实就是昔日微粒说的一种翻版,假设光是离散的,由一个个小的基本单位所组成的。另一方面,当时关于光电效应的实验没有一个能够非常明确地证实光量子的正确性。

仿佛宿命一般,历史在转了一个大圈之后,又回到起点。关于光的本性问题,干戈再起,“第三次波粒战争”一触即发。而这次,导致的后果是全面的世界大战,天翻地覆,一切在毁灭后才得到重生。

1666年,23岁的牛顿为了躲避瘟疫,回到乡下的老家度假。在那段日子里,他一个人独立完成了几项开天辟地的工作,包括发明了微积分(流数),完成了光分解的实验分析,以及对于万有引力定律的开创性思考。在那一年,他为数学、力学和光学三大学科分别打下了基础,而其中的任何一项工作,都足以让他名列有史以来最伟大的科学家之列。

1905年的爱因斯坦也是这样,在专利局里蜗居的他在这一年写出了6篇论文:3月18日,是我们上面提到过的关于光电效应的文章,这成为了量子论的奠基石之一。4月30日,关于测量分子大小的论文,这为他赢得了博士学位。5月11日和后来的12月19日,两篇关于布朗运动的论文,成了分子论的里程碑。6月30日,题为《论运动物体的电动力学》的论文,这个不起眼的题目后来被加上了一个如雷贯耳的名称,叫做“狭义相对论”,它的意义就不用我多说了。9月27日,关于物体惯性和能量的关系,这是狭义相对论的进一步说明,并且在其中提出了著名的质能方程E=mc²(E表示能量,m代表质量,而c则表示光速)。 单单这一年的工作,便至少配得上3个诺贝尔奖。相对论的意义是不是诺贝尔奖所能评价的,还很难说。而这一切也不过是在专利局的办公室里,一个人用纸和笔完成的而已。

1911年10月30日,第一届索尔维会议正式在比利时布鲁塞尔召开。24位最杰出的物理学家参加了会议,并在量子理论,气体运动理论以及辐射现象等课题上进行了讨论。这仍然是量子发展史上的一次重大事件,因为量子问题终于在这次会议之后被推到了历史的最前沿,成为时代潮头上的一个焦点。爱因斯坦的朋友贝索后来把1911年的会议称为一次“巫师盛会”,也许,这真的是量子魔法师在炫技前所念的最后的神奇咒语?

一起去看看量子魔法是怎样影响了实实在在的物质——原子核和电子的。


汤姆逊、卢瑟福、巴尔末、玻尔

1897年,J.J.汤姆逊在研究阴极射线的时候,发现了原子中电子的存在。这打破了从古希腊人那里流传下来的“原子不可分割”的理念,明确地向人们展示:原子是可以继续分割的,它有着自己的内部结构呢!汤姆逊那时完全缺乏实验证据,他于是展开自己的想象,勾勒出这样的图景:原子呈球状,带正电荷,而带负电荷的电子则一粒粒地“镶嵌”在这个圆球上。史称“葡萄干布丁”模型。

1910年,卢瑟福和学生们在他的实验室里进行了一次名留青史的实验。他们用α粒子(带正电的氦核)来轰击一张极薄的金箔,想通过散射来确认那个“葡萄干布丁”的大小和性质。这时候,极为不可思议的情况出现了:有少数α粒子的散射角度是如此之大,以致超过90度。

他认识到,α粒子被反弹回来,必定是因为它们和金箔原子中某种极为坚硬密实的核心发生了碰撞。这个核心应该是带正电,而且集中了原子的大部分质量。但是,从α粒子只有很少一部分出现大角度散射这一情况来看,那核心占据的地方是很小的,不到原子半径的万分之一。

在他描述的原子图像中,有一个占据了绝大部分质量的“原子核”在原子的中心。而在这个原子核的四周,带负电的电子则沿着特定的轨道绕着它运行。这很像一个行星系统(比如太阳系),所以这个模型被理所当然地称为“行星系统”模型。

但是,这个看来完美的模型却有着自身难以克服的严重困难。因为物理学家们很快就指出,带负电的电子绕着带正电的原子核运转,这个体系是不稳定的。根据麦克斯韦理论,两者之间会放射出强烈的电磁辐射,从而导致电子一点点地失去自己的能量。作为代价,它便不得不逐渐缩小运行半径,直到最终“坠毁”在原子核上为止,整个过程用时不过一眨眼的工夫。

1912年7月,玻尔完成了他在原子结构方面的第一篇论文,历史学家们后来常常把它称作“曼彻斯特备忘录”。玻尔在其中已经开始试图把量子的概念结合到卢瑟福模型中去,以解决经典电磁力学所无法解释的难题。

玻尔在哥本哈根埋头苦干的那个年头,门捷列夫的元素周期律已经被发现了很久,化学键理论也已经被牢固地建立。种种迹象都表明在原子内部,有一种潜在的规律支配着它们的行为,并形成某种特定的模式。

1913年初,年轻的丹麦人汉森请教玻尔,在他那量子化的原子模型里如何解释原子的光谱线问题。对于这个问题,玻尔之前并没有太多地考虑过,原子光谱对他来说是陌生和复杂的,成千条谱线和种种奇怪的效应在他看来太杂乱无章,似乎不能从中得出什么有用的信息。然而汉森告诉玻尔,这里面其实是有规律的,比如巴尔末公式。

概括来说,当时的人们已经知道,任何元素在被加热时都会释放出含有特定波长的光线,比如我们从中学的焰色实验中知道,钠盐放射出明亮的黄光,钾盐则呈紫色,锂是红色,铜是绿色,等等。将这些光线通过分光镜投射到屏幕上,便得到光谱线。但是,这些谱线呈现什么规律以及为什么会有这些规律,1885年,瑞士的一位数学教师巴尔末发现了其中的规律,并总结了一个公式来表示这些波长之间的关系,这就是著名的巴尔末公式。将它的原始形式稍微变换一下,用波长的倒数来表示,则显得更加简单明了。

它像一个火花,瞬间点燃了玻尔的灵感,所有的疑惑在那一刻变得顺理成章了。巴尔末公式里面用到了一个变量n,那是大于2的任何正整数。n可以等于3,可以等于4,但不能等于3.5,这无疑是一种量子化的表述。玻尔深呼了一口气,他的大脑在急速地运转:原子只能放射出波长符合某种量子规律的辐射,这说明了什么呢?我们再回忆一下从普朗克引出的那个经典量子公式:E=hv。频率(波长)是能量的量度,原子只释放特定波长的辐射,说明在原子内部,它只能以特定的量吸收或发射能量。说明电子只能在特定的“势能位置”之间转换。也就是说,电子只能按照某些“确定的”轨道运行,这些轨道,必须符合一定的势能条件,从而使得电子在这些轨道间跃迁时,只能释放出符合巴尔末公式的能量来。

玻尔所有的这些思想,转化成理论推导和数学表达,并以三篇论文的形式最终发表。这三篇论文(或者也可以说,一篇大论文的三个部分),分别题名为《论原子和分子的构造》,《单原子核体系》和《多原子核体系》,于1913年3月到9月陆续寄给了远在曼彻斯特的卢瑟福,并由后者推荐发表在《哲学杂志》上。这就是在量子物理历史上划时代的文献,亦即伟大的“三部曲”。

如果把量子力学的发展史分为三部分,1900年的普朗克宣告了量子的诞生,那么1913年的玻尔则宣告了它进入了青年时代。一个完整的关于原子的理论体系第一次被建造起来,但是玻尔理论没法解释,为什么电子有着离散的能级和量子化的行为,它只知其然,而不知其所以然。


康普顿、德布罗意、玻色、戴维逊、汤姆逊

1923年,康普顿则带领微粒军团取得了一场决定性的胜利,把他们所潜藏着的惊人力量展现得淋漓尽致。他在研究X射线被自由电子散射的时候,发现一个奇怪的现象:散射出来的X射线分成两个部分,一部分和原来的入射射线波长相同,而另一部分却比原来的射线波长要长,具体的大小和散射角存在着函数关系。

终于有一天,他作了一个破釜沉舟的决定,引入光量子的假设,把X射线看做能量为hʋ的光子束的集合。这个假定马上让他看到了曙光,眼前豁然开朗:那一部分波长变长的射线是因为光子和电子碰撞所引起的。光子像普通的小球那样,不仅带有能量,还具有冲量,当它和电子相撞,便将自己的能量交换一部分给电子。这样一来光子的能量下降,根据公式E=hʋ,E下降导致ʋ下降,频率变小,便是波长变大,over(结束)。

上帝造了光,爱因斯坦指出了什么是光,而康普顿,则第一个在真正意义上“看到”了这光。“第三次波粒战争”全面爆发了。卷土重来的微粒军团装备了最先进的武器:光电效应和康普顿效应。

1924年,德布罗意推论:根据爱因斯坦那著名的方程,如果电子有质量m,那么它一定有一个内禀的能量E=mc²,好,让我们再次回忆那个我说过很有用的量子基本方程,E=hʋ,也就是说,对应这个能量,电子一定会具有一个内禀的频率。这个频率的计算很简单,因为mc²=E=hʋ,所以ʋ=mc²/h。好,电子有一个内在频率。那么频率是什么呢?它是某种振动的周期。那么我们又得出结论,电子内部有某些东西在振动。是什么东西在振动呢?德布罗意借助相对论,开始了他的运算,结果发现……当电子以速度v前进时,必定伴随着一个速度为c²/v的波……

噢,你没有听错。电子在前进时,本身总是伴随着一个波。细心的读者可能要发出疑问,因为他们发现这个波的速度c²/v将比光速还快上许多,但是这不是一个问题。德布罗意证明,这种波不能携带实际的能量和信息,因此并不违反相对论。德布罗意把这种波称为“相波”(phasewave),后人为了纪念他,也称其为“德布罗意波”。计算这个波的波长是容易的,就简单地把上面得出的速度除以它的频率,那么我们就得到:λ=(c²/v)/(mc²/h)=h/mv,这个叫做德布罗意波长公式。

在博士答辩中,所有的人都在异口同声地说,“如果电子是一个波,那么就让我们看到它是一个波的样子。把它的衍射实验做出来给我们看,把干涉图纹放在我们的眼前。”德布罗意有礼貌地回敬道:“是的,先生们,我会给你们看到证据的。我预言,电子在通过一个小孔或者晶体的时候,会像光波那样,产生一个可观测的衍射现象。”

德布罗意的博士学位当然不是侥幸得来的,恰恰相反,这也许是颁发过的含金量最高的学位之一。德布罗意是有史以来第一个仅凭借博士论文就直接获取科学的最高荣誉——诺贝尔奖的例子,而他的精彩预言也将和他本人一样在物理史上流芳百世。

1924年,玻色把光看成是不可区分的粒子的集合,从这个简单的假设出发,他一手推导出了普朗克的黑体公式!爱因斯坦亲自把这篇重要的论文翻译成德文发表,他随即又进一步完善玻色的思想,发展出了后来在量子力学中具有举足轻重地位的玻色-爱因斯坦统计方法。玻色-爱因斯坦统计的确立是微粒在光领域的又一个里程碑式的胜利。原来仅仅把光简单地看成全同的粒子,困扰人们多时的黑体辐射和别的许许多多的难题就自然都迎刃而解!

1925年,物理学真正走到了一个十字路口。它迷茫而又困惑,不知道前途何去何从。玻尔建立的大厦虽然看起来还是顶天立地,但稍微了解一点内情的工程师们都知道它已经几经裱糊,伤筋动骨,摇摇欲坠,只是仍然在苦苦支撑而已。更何况,这个大厦还凭借着对应原理的天桥,依附在麦克斯韦的旧楼上,这就更教人不敢对它的前途抱有任何希望。在另一边,微粒和波动打得烽火连天,谁也奈何不了谁,长期的战争已经使物理学的基础处在崩溃边缘,它甚至不知道自己是建立在什么东西之上。

1927年,贝尔电话实验室的戴维逊就和革末通过实验精确地证明了电子的波动性:被镍块散射的电子,其行为和X射线衍射一模一样!人们终于发现,在某种情况下,电子表现出如X射线般的纯粹波动性质来。

1927年,G.P.汤姆逊,著名的J.J.汤姆逊的儿子,在剑桥通过实验进一步证明了电子的波动性。实验中得到的电子的衍射图案,和X射线衍射图案相差无几,而所有的数据,也都和德布罗意的预言吻合得天衣无缝。现在没什么好怀疑的了,我们可以赌咒发誓:电子,千真万确,童叟无欺,绝对是一种波!

海森堡、薛定谔、玻尔、波恩

1925年,海森堡得益于爱因斯坦的相对论的思路而创立起了矩阵力学,并提出不确定性原理及矩阵理论。海森堡坚定地想,物理学应当有一个坚固的基础,它只能够从一些直接可以被实验观察和检验的东西出发。一个物理学家应当始终坚持严格的经验主义,而不是想象一些图像来作为理论的基础。电子的轨道,还有它绕着轨道的运转频率,都不是能够实际观察到的,那么只有“能级差”或者“轨道差”是可以被直接观察到的,而“能级”和“轨道”却不是。

波恩约尔当奠定了一种新的力学——矩阵力学的基础。在这种新力学体系的魔法下,普朗克常数和量子化从我们的基本力学方程中自然而然地跳了出来,成为自然界的内在禀性。如果认真地对这种力学形式做一下探讨,人们会惊奇地发现,牛顿体系里的种种结论,比如能量守恒,从新理论中也可以得到。这就是说,新力学其实是牛顿理论的一个扩展,老的经典力学其实被“包含”在我们的新力学中,成为一种特殊情况下的表现形式。

这种新的力学很快就得到进一步完善。从剑桥返回哥廷根后,海森堡本人也加入了这个伟大的开创性工作中。11月26日,《论量子力学Ⅱ》在《物理学杂志》上发表,作者是波恩、海森堡和约尔当。这篇论文把原来只讨论一个自由度的体系扩展到任意个自由度,从而彻底建立了新力学的主体。

现在,他们可以自豪地宣称,长期以来人们所苦苦追寻的那个目标终于达到了,多年以来如此困扰着物理学家的原子光谱问题,现在终于可以在新力学内部完美地解决。《论量子力学Ⅱ》这篇文章,被海森堡本人亲切地称呼为“三人论文”,也终于注定要在物理史上流芳百世。

1926年,薛定谔提出其波动方程时已39岁,在这一点上,他倒是与其柏林大学的前任普朗克不无相似。据说他的这种创造性的激情,恰恰来自圣诞节假期中与情人的幽会,且一发而不可收,在短短不到五个月时间里,一连发表了六篇论文,不仅建立起波动力学的完整框架,系统地回答了当时已知的实验现象,而且证明了波动力学与海森伯矩阵力学在数学上是等价的,令整个物理学界为之震惊(狄拉克也单独的证明了这个结论)。颇有讽刺意味的是,尽管为革命性的量子力学作出了基础性的贡献,薛定谔本人的初衷却是恢复微观现象的经典解释;而更令人称绝的是,薛定谔本人坦承他的科学工作,常常并非是独创性的,但他总能敏锐地抓住一些人的创新性观念,加以系统的构建和发挥,从而构成第一流的理论:波动力学来自德布罗意,《生命是什么》来自玻尔和德尔布吕克,而“薛定谔的猫”则来自爱因斯坦。

薛定谔以人们所喜闻乐见的传统方式发布他的波动方程后,几乎全世界的物理学家都松了一口气:他们终于解脱了,不必再费劲地学习海森堡那异常复杂和繁难的矩阵力学。薛定谔的方程通俗形象,简明易懂,当人们从矩阵那陌生的迷宫里抬起头来,再次看到自己熟悉的以微分方程所表达的系统时,他们都像闻到了故乡泥土的芬芳,有一种热泪盈眶的冲动。当然,人人都必须承认,矩阵力学本身的伟大含义是不容怀疑的。

我们追寻它们各自的家族史,发现它们都是从经典的哈密顿函数而来,只不过一个是从粒子的运动方程出发,一个是从波动方程出发罢了。

1927年3月23日,海森堡在《物理学杂志》上发表,被称作UncertaintyPrinciple。当它最初被翻译成中文的时候,被十分可爱地译成了“测不准原理”,不过现在大多数都改为更加具有普遍意义的“不确定性原理”。

“电子,它是如此地小而轻,以至于光子对它的撞击决不能忽略不计了。测量一个电子的位置?好,我们派遣一个光子去执行这个任务,它回来怎么报告呢?是的,我接触到了这个电子,但是它给我狠狠撞了一下后,飞到不知什么地方去了,它现在的速度我可什么都说不上来。看,为了测量它的位置,我们剧烈地改变了它的速度,也就是动量。我们没法同时既准确地知道一个电子的位置,同时又准确地了解它的动量。”海森堡飞也似地跑回研究所,埋头一阵苦算,最后他得出了一个公式:△p×△q>h/4π△p和△q分别是测量p和测量q的误差,h是普朗克常数。海森堡发现,测量p和测量q的误差,它们的乘积必定要大于某个常数。

不确定性确实是建立在波和粒子的双重基础上的,它其实是电子在波和粒子间的一种摇摆:对于波的属性了解得越多,关于粒子的属性就了解得越少。海森堡最后终于接受了玻尔的批评,给他的论文加了一个附注,声明不确定性其实同时建筑在连续性和不连续性两者之上,并感谢玻尔指出了这一点。

波和粒子在同一时刻是互斥的,但它们却在一个更高的层次上统一在一起,作为电子的两面被纳入一个整体概念中。这就是玻尔的“互补原理”,它连同波恩的概率解释,海森堡的不确定性,三者共同构成了量子论“哥本哈根解释”的核心,至今仍然深刻地影响着我们对于整个宇宙的终极认识。

不存在一个客观的,绝对的世界。唯一存在的,就是我们能够观测到的世界。物理学的全部意义,不在于它能够揭示出自然“是什么”,而在于它能够明确,关于自然我们能“说什么”。没有一个脱离于观测而存在的“绝对自然”,只有我们和那些复杂的测量关系,熙熙攘攘纵横交错,构成了这个令人心醉的宇宙的全部。测量是新物理学的核心,测量行为创造了整个世界。

概率解释,不确定性原理和互补原理这三大核心原理中,前两者摧毁了经典世界的(严格)因果性,互补原理和不确定性原理又合力捣毁了世界的(绝对)客观性。

1927年,量子革命的大爆发已经进入第三年,到了一个收官的阶段。当年种下的种子如今开花结果,革命的思潮已经席卷整个物理界,毫无保留地指明了未来的方向。越来越多的人终究领悟到了哥本哈根解释的核心奥义,并诚心皈依,都投在量子门下。

1930年,狄拉克出版了那本经典的量子力学教材,两种力学被完美地统一起来,作为一个理论的不同表达形式出现在读者面前。矩阵出发,可以推导出波动函数的表达形式来,而反过来,从波函数也可以导出我们的矩阵,就矩阵方面来说,它的本意是粒子性和不连续性,而波动方面却始终在谈论波动性和连续性。

你可能感兴趣的:(上帝会掷骰子吗?量子物理史话)