1、线性回归
import matplotlib.pyplot as plt
import tensorflow as tf # (需安装tensorflow2.0)
import numpy as np
# 搭建模型
class Model(object):
def __init__(self):
self.W = tf.Variable(tf.random.uniform([1])) # 随机初始化参数
self.b = tf.Variable(tf.random.uniform([1]))
def __call__(self, x):
return self.W * x * x + self.b
# return self.W * x + self.b
# 计算损失函数
def loss_fn(y, y_):
return tf.reduce_mean(tf.square(y_ - y))
# 训练模型
def fit(model, x, y, epochs=100, learning_rate=0.01):
"""
input:
x: shape=(n_samples, 1)
y: shape=(n_samples, 1)
output:
w,b:训练中每一步的参数列表
l:训练中每一步的loss列表
"""
# 收集参数
w, b, l = [], [], []
for epoch in range(epochs): # 迭代次数
with tf.GradientTape() as tape: # 追踪梯度
y_ = model(x)
loss = loss_fn(y, y_) # 计算损失
dW, db = tape.gradient(loss, [model.W, model.b]) # 计算梯度
model.W.assign_sub(learning_rate * dW) # 更新梯度
model.b.assign_sub(learning_rate * db)
w.append(model.W.numpy()[0])
b.append(model.b.numpy()[0])
l.append(loss.numpy())
# 为了画图方便所以产生迭代器,正常训练只用return即可
yield
return w, b, l
if __name__ == '__main__':
# 初始化随机数据
TRUE_W = 4.0
TRUE_b = 2.0
NUM_SAMPLES = 100
X = np.random.randn(NUM_SAMPLES, 1)
noise = np.random.randn(NUM_SAMPLES, 1) # 添加噪声
Y = X * X * TRUE_W + TRUE_b + noise
model = Model()
# 画图所用数据
x_2 = np.linspace(np.min(X), np.max(X), 100)
iterline = fit(model, X, Y, epochs=50)
for _ in iterline:
plt.cla()
plt.scatter(X, Y)
plt.plot(x_2, model(x_2), c='r')
plt.draw()
plt.pause(0.05)
plt.pause(2)
2、k-means
import matplotlib.pyplot as plt
import numpy as np
import random
# 搭建模型
class Model(object):
def __init__(self):
self.center = None
def __call__(self, data):
"""
input:
data: shape=(n_samples, n_features)
output:
z: shape=(n_smaples,)
"""
distance = self.EuclideanDistance(data, self.center)
z = distance.argmin(axis=1)
return z
def fit(self, data, k):
# 随机初始化簇中心
n_samples = len(data)
indices = random.sample(range(n_samples), k)
self.center = np.copy(data[indices])
pipe_data = []
for j in range(50):
distance = self.EuclideanDistance(data, self.center) # 计算距离
index = distance.argmin(axis=1) # 获取最近的center索引
# 生成onehot编码
onehot = np.eye(k, dtype=np.float32)[index]
# 以矩阵相乘的形式均值化簇中心
# (n_samples, k)^T * (n_samples, n_features) = (k, n_features)
new_center = np.matmul(np.transpose(onehot, (1, 0)), data)
new_center = new_center / np.expand_dims(np.sum(onehot, axis=0), axis=1)
# 计算loss
loss = np.sum(onehot * distance)/n_samples
# 中心不变就退出循环,可能有误差
# if (new_center == self.center).all() : break
# 更新center
self.center = new_center
# 回传数据,包括每一步训练的中心,对应数据label,loss
pipe_data.append([self.center, index, loss])
yield pipe_data[j] # 画图专用迭代器,可去除
return pipe_data
def EuclideanDistance(self, data, center):
"""欧式距离
input:
data: shape=(n_samples, n_features)
center: shape=(k, n_features)
output:
z: shape=(n_smaples, k)
"""
z = np.expand_dims(data, axis=1) - center
z = np.square(z)
z = np.sqrt(np.sum(z, axis=2))
return z
# 画图函数
def display(data, center, index):
plt.cla()
plt.scatter(data[:, 0], data[:, 1], c=index, alpha=0.8)
plt.scatter(center[:, 0], center[:, 1], s=500, marker='*')
plt.draw()
plt.pause(0.05)
if __name__ == '__main__':
# 初始化随机数据
n_samples = 3000
n_features = 2
data = np.random.randn(n_samples, n_features) + [-3, 6]
model = Model()
iterkm = model.fit(data, k=4)
for center, index, loss in iterkm:
# print(model.center[0,0])
print(loss)
display(data,center,index)
plt.pause(3)
# 预测
test = np.random.randn(20, 2)+ [-3, 6]
index = model(test)
display(test,model.center,index)
plt.pause(3)