本文源自代码随想录的学习笔记,如有侵权请联系我下架。
贪⼼思路往往很巧妙,并不简单
贪心的题目往往有这类特点:
如果找出局部最优并可以推出全局最优,就是贪⼼,如果局部最优都没找出来,就不是 贪⼼,可能是单纯的模拟。
如何知道局部最优推出全局最优,有数学证明么?其实不太需要严谨的数学证明,能大致解释就行了。
本文既有简单适当的证明(每篇⽂章都⽤了反证法),也把常识性的知识理论化,系统化(局部最优、全局最优的分析)。
但是不需要这么麻烦。
删除单调坡度上的结点(不包括单调)
力扣题目链接(opens new window)
给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
示例 2:
示例 3:
提示:
本题首先要清楚两点:
想获得利润至少要两天为一个交易单元。
这道题目可能我们只会想,选一个低的买入,再选个高的卖,再选一个低的买入.....循环反复。
如果想到其实最终利润是可以分解的,那么本题就很容易了!
如何分解呢?
假如第0天买入,第3天卖出,那么利润为:prices[3] - prices[0]。
相当于(prices[3] - prices[2]) + (prices[2] - prices[1]) + (prices[1] - prices[0])。
此时就是把利润分解为每天为单位的维度,而不是从0天到第3天整体去考虑!
那么根据prices可以得到每天的利润序列:(prices[i] - prices[i - 1]).....(prices[1] - prices[0])。
如图:
一些同学陷入:第一天怎么就没有利润呢,第一天到底算不算的困惑中。
第一天当然没有利润,至少要第二天才会有利润,所以利润的序列比股票序列少一天!
从图中可以发现,其实我们需要收集每天的正利润就可以,收集正利润的区间,就是股票买卖的区间,而我们只需要关注最终利润,不需要记录区间。
那么只收集正利润就是贪心所贪的地方!
局部最优:收集每天的正利润,全局最优:求得最大利润。
局部最优可以推出全局最优,找不出反例,试一试贪心!
对应C++代码如下:
class Solution {
public:
int maxProfit(vector& prices) {
int result = 0;
for (int i = 1; i < prices.size(); i++) {
result += max(prices[i] - prices[i - 1], 0);
}
return result;
}
};
力扣题目链接(opens new window)
给定一个非负整数数组,你最初位于数组的第一个位置。
数组中的每个元素代表你在该位置可以跳跃的最大长度。
判断你是否能够到达最后一个位置。
示例 1:
示例 2:
刚看到本题一开始可能想:当前位置元素如果是3,我究竟是跳一步呢,还是两步呢,还是三步呢,究竟跳几步才是最优呢?
其实跳几步无所谓,关键在于可跳的覆盖范围!
不一定非要明确一次究竟跳几步,每次取最大的跳跃步数,这个就是可以跳跃的覆盖范围。
这个范围内,别管是怎么跳的,反正一定可以跳过来。
那么这个问题就转化为跳跃覆盖范围究竟可不可以覆盖到终点!
每次移动取最大跳跃步数(得到最大的覆盖范围),每移动一个单位,就更新最大覆盖范围。
贪心算法局部最优解:每次取最大跳跃步数(取最大覆盖范围),整体最优解:最后得到整体最大覆盖范围,看是否能到终点。
局部最优推出全局最优,找不出反例,试试贪心!
如图:
i每次移动只能在cover的范围内移动,每移动一个元素,cover得到该元素数值(新的覆盖范围)的补充,让i继续移动下去。
而cover每次只取 max(该元素数值补充后的范围, cover本身范围)。
如果cover大于等于了终点下标,直接return true就可以了。
C++代码如下:
class Solution {
public:
bool canJump(vector& nums) {
int cover = 0;
if (nums.size() == 1) return true; // 只有一个元素,就是能达到
for (int i = 0; i <= cover; i++) { // 注意这里是小于等于cover
cover = max(i + nums[i], cover);
if (cover >= nums.size() - 1) return true; // 说明可以覆盖到终点了
}
return false;
}
};
力扣题目链接(opens new window)
给定一个非负整数数组,你最初位于数组的第一个位置。
数组中的每个元素代表你在该位置可以跳跃的最大长度。
你的目标是使用最少的跳跃次数到达数组的最后一个位置。
示例:
说明: 假设你总是可以到达数组的最后一个位置。
但思路是相似的,还是要看最大覆盖范围。
本题要计算最小步数,那么就要想清楚什么时候步数才一定要加一呢?
贪心的思路,局部最优:当前可移动距离尽可能多走,如果还没到终点,步数再加一。整体最优:一步尽可能多走,从而达到最小步数。
以第一步为例,我们有很多步可以走,那么具体选哪一步呢?我们就要看哪一步走完之后,它的这一步所能覆盖的最远的范围是多大。
个人思路,第一步当前步的可覆盖范围,是可以直接通过数组
class Solution {
public:
int jump(vector& nums) {
vector coverDis(nums.size());
if(nums.size()==1)return 0;
if(nums[0]==0)return 0;
coverDis[0]=nums[0];
if(coverDis[0]>=nums.size()-1)return 1;
for(int i=1;i=nums.size()-1){
return i+1;
break;
}
}
return nums.size()-1;
}
};
这样算是过了 但是(
先暂跳
力扣题目链接(opens new window)
给定一个整数数组 A,我们只能用以下方法修改该数组:我们选择某个索引 i 并将 A[i] 替换为 -A[i],然后总共重复这个过程 K 次。(我们可以多次选择同一个索引 i。)
以这种方式修改数组后,返回数组可能的最大和。
示例 1:
示例 2:
示例 3:
提示:
本题思路其实比较好想了,如何可以让数组和最大呢?
贪心的思路,局部最优:让绝对值大的负数变为正数,当前数值达到最大,整体最优:整个数组和达到最大。
局部最优可以推出全局最优。
那么如果将负数都转变为正数了,K依然大于0,此时的问题是一个有序正整数序列,如何转变K次正负,让 数组和 达到最大。
那么又是一个贪心:局部最优:只找数值最小的正整数进行反转,当前数值和可以达到最大(例如正整数数组{5, 3, 1},反转1 得到-1 比 反转5得到的-5 大多了),全局最优:整个 数组和 达到最大。
虽然这道题目大家做的时候,可能都不会去想什么贪心算法,一鼓作气,就AC了。
我这里其实是为了给大家展现出来 经常被大家忽略的贪心思路,这么一道简单题,就用了两次贪心!
那么本题的解题步骤为:
对应C++代码如下:
class Solution {
static bool cmp(int a, int b) {
return abs(a) > abs(b);
}
public:
int largestSumAfterKNegations(vector& A, int K) {
sort(A.begin(), A.end(), cmp); // 第一步
for (int i = 0; i < A.size(); i++) { // 第二步
if (A[i] < 0 && K > 0) {
A[i] *= -1;
K--;
}
}
if (K % 2 == 1) A[A.size() - 1] *= -1; // 第三步
int result = 0;
for (int a : A) result += a; // 第四步
return result;
}
};
贪心的题目如果简单起来,会让人简单到开始怀疑:本来不就应该这么做么?这也算是算法?我认为这不是贪心?
本题其实很简单,不会贪心算法的同学都可以做出来,但是我还是全程用贪心的思路来讲解。
因为贪心的思考方式一定要有!
如果没有贪心的思考方式(局部最优,全局最优),很容易陷入贪心简单题凭感觉做,贪心难题直接不会做,其实这样就锻炼不了贪心的思考方式了。
所以明知道是贪心简单题,也要靠贪心的思考方式来解题,这样对培养解题感觉很有帮助。
力扣题目链接(opens new window)
在一条环路上有 N 个加油站,其中第 i 个加油站有汽油 gas[i] 升。
你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i+1 个加油站需要消耗汽油 cost[i] 升。你从其中的一个加油站出发,开始时油箱为空。
如果你可以绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1。
说明:
示例 1: 输入:
输出: 3 解释:
示例 2: 输入:
gas = [2,3,4]
cost = [3,4,3]
输出: -1
解释: 你不能从 0 号或 1 号加油站出发,因为没有足够的汽油可以让你行驶到下一个加油站。我们从 2 号加油站出发,可以获得 4 升汽油。 此时油箱有 = 0 + 4 = 4 升汽油。开往 0 号加油站,此时油箱有 4 - 3 + 2 = 3 升汽油。开往 1 号加油站,此时油箱有 3 - 3 + 3 = 3 升汽油。你无法返回 2 号加油站,因为返程需要消耗 4 升汽油,但是你的油箱只有 3 升汽油。因此,无论怎样,你都不可能绕环路行驶一周。
暴力的方法很明显就是O(n^2)的,遍历每一个加油站为起点的情况,模拟一圈。
如果跑了一圈,中途没有断油,而且最后油量大于等于0,说明这个起点是ok的。
暴力的方法思路比较简单,但代码写起来也不是很容易,关键是要模拟跑一圈的过程。
for循环适合模拟从头到尾的遍历,而while循环适合模拟环形遍历,要善于使用while!
C++代码如下:
class Solution {
public:
int canCompleteCircuit(vector& gas, vector& cost) {
for (int i = 0; i < cost.size(); i++) {
int rest = gas[i] - cost[i]; // 记录剩余油量
int index = (i + 1) % cost.size();
while (rest > 0 && index != i) { // 模拟以i为起点行驶一圈(如果有rest==0,那么答案就不唯一了)
rest += gas[index] - cost[index];
index = (index + 1) % cost.size();
}
// 如果以i为起点跑一圈,剩余油量>=0,返回该起始位置
if (rest >= 0 && index == i) return i;
}
return -1;
}
};
直接从全局进行贪心选择,情况如下:
情况一:如果gas的总和小于cost总和,那么无论从哪里出发,一定是跑不了一圈的
情况二:rest[i] = gas[i]-cost[i]为一天剩下的油,i从0开始计算累加到最后一站,如果累加没有出现负数,说明从0出发,油就没有断过,那么0就是起点。
可以换一个思路,首先如果总油量减去总消耗大于等于零那么一定可以跑完一圈,说明 各个站点的加油站 剩油量rest[i]相加一定是大于等于零的。
每个加油站的剩余量rest[i]为gas[i] - cost[i]。
i从0开始累加rest[i],和记为curSum,一旦curSum小于零,说明[0, i]区间都不能作为起始位置,因为这个区间选择任何一个位置作为起点,到i这里都会断油,那么起始位置从i+1算起,再从0计算curSum。
如图:
那么为什么一旦[0,i] 区间和为负数,起始位置就可以是i+1呢,i+1后面就不会出现更大的负数?
如果出现更大的负数,就是更新i,那么起始位置又变成新的i+1了。
那有没有可能 [0,i] 区间 选某一个作为起点,累加到 i这里 curSum是不会小于零呢? 如图:
如果 curSum<0 说明 区间和1 + 区间和2 < 0, 那么 假设从上图中的位置开始计数curSum不会小于0的话,就是 区间和2>0。
区间和1 + 区间和2 < 0 同时 区间和2>0,只能说明区间和1 < 0, 那么就会从假设的箭头初就开始从新选择其实位置了。
那么局部最优:当前累加rest[i]的和curSum一旦小于0,起始位置至少要是i+1,因为从i之前开始一定不行。全局最优:找到可以跑一圈的起始位置。
局部最优可以推出全局最优,找不出反例,试试贪心!
C++代码如下:
class Solution {
public:
int canCompleteCircuit(vector& gas, vector& cost) {
int curSum = 0;
int totalSum = 0;
int start = 0;
for (int i = 0; i < gas.size(); i++) {
curSum += gas[i] - cost[i];
totalSum += gas[i] - cost[i];
if (curSum < 0) { // 当前累加rest[i]和 curSum一旦小于0
start = i + 1; // 起始位置更新为i+1
curSum = 0; // curSum从0开始
}
}
if (totalSum < 0) return -1; // 说明怎么走都不可能跑一圈了
return start;
}
};
说这种解法为贪心算法,才是有理有据的,因为全局最优解是根据局部最优推导出来的。
力扣题目链接(opens new window)
老师想给孩子们分发糖果,有 N 个孩子站成了一条直线,老师会根据每个孩子的表现,预先给他们评分。
你需要按照以下要求,帮助老师给这些孩子分发糖果:
那么这样下来,老师至少需要准备多少颗糖果呢?
示例 1:
示例 2:
这道题目一定是要确定一边之后,再确定另一边,例如比较每一个孩子的左边,然后再比较右边,如果两边一起考虑一定会顾此失彼。
先确定右边评分大于左边的情况(也就是从前向后遍历)
此时局部最优:只要右边评分比左边大,右边的孩子就多一个糖果,全局最优:相邻的孩子中,评分高的右孩子获得比左边孩子更多的糖果
局部最优可以推出全局最优。
如果ratings[i] > ratings[i - 1] 那么[i]的糖 一定要比[i - 1]的糖多一个,所以贪心:candyVec[i] = candyVec[i - 1] + 1
代码如下:
// 从前向后
for (int i = 1; i < ratings.size(); i++) {
if (ratings[i] > ratings[i - 1]) candyVec[i] = candyVec[i - 1] + 1;
}
如图:
再确定左孩子大于右孩子的情况(从后向前遍历)
遍历顺序这里有同学可能会有疑问,为什么不能从前向后遍历呢?
因为 rating[5]与rating[4]的比较 要利用上 rating[5]与rating[6]的比较结果,所以 要从后向前遍历。
如果从前向后遍历,rating[5]与rating[4]的比较 就不能用上 rating[5]与rating[6]的比较结果了 。如图:
所以确定左孩子大于右孩子的情况一定要从后向前遍历!
如果 ratings[i] > ratings[i + 1],此时candyVec[i](第i个小孩的糖果数量)就有两个选择了,一个是candyVec[i + 1] + 1(从右边这个加1得到的糖果数量),一个是candyVec[i](之前比较右孩子大于左孩子得到的糖果数量)。
那么又要贪心了,局部最优:取candyVec[i + 1] + 1 和 candyVec[i] 最大的糖果数量,保证第i个小孩的糖果数量既大于左边的也大于右边的。全局最优:相邻的孩子中,评分高的孩子获得更多的糖果。
局部最优可以推出全局最优。
所以就取candyVec[i + 1] + 1 和 candyVec[i] 最大的糖果数量,candyVec[i]只有取最大的才能既保持对左边candyVec[i - 1]的糖果多,也比右边candyVec[i + 1]的糖果多。
如图:
所以该过程代码如下:
// 从后向前
for (int i = ratings.size() - 2; i >= 0; i--) {
if (ratings[i] > ratings[i + 1] ) {
candyVec[i] = max(candyVec[i], candyVec[i + 1] + 1);
}
}
整体代码如下:
class Solution {
public:
int candy(vector& ratings) {
vector candyVec(ratings.size(), 1);
// 从前向后
for (int i = 1; i < ratings.size(); i++) {
if (ratings[i] > ratings[i - 1]) candyVec[i] = candyVec[i - 1] + 1;
}
// 从后向前
for (int i = ratings.size() - 2; i >= 0; i--) {
if (ratings[i] > ratings[i + 1] ) {
candyVec[i] = max(candyVec[i], candyVec[i + 1] + 1);
}
}
// 统计结果
int result = 0;
for (int i = 0; i < candyVec.size(); i++) result += candyVec[i];
return result;
}
};
这在leetcode上是一道困难的题目,其难点就在于贪心的策略,如果在考虑局部的时候想两边兼顾,就会顾此失彼。
那么本题我采用了两次贪心的策略:
这样从局部最优推出了全局最优,即:相邻的孩子中,评分高的孩子获得更多的糖果。
力扣题目链接(opens new window)
假设有打乱顺序的一群人站成一个队列,数组 people 表示队列中一些人的属性(不一定按顺序)。每个 people[i] = [hi, ki] 表示第 i 个人的身高为 hi ,前面 正好 有 ki 个身高大于或等于 hi 的人。
请你重新构造并返回输入数组 people 所表示的队列。返回的队列应该格式化为数组 queue ,其中 queue[j] = [hj, kj] 是队列中第 j 个人的属性(queue[0] 是排在队列前面的人)。
示例 1:
示例 2:
提示:
题目数据确保队列可以被重建
本题有两个维度,h和k,看到这种题目一定要想如何确定一个维度,然后再按照另一个维度重新排列。
其实如果大家认真做了135. 分发糖果 (opens new window),就会发现和此题有点点的像。
在135. 分发糖果 (opens new window)我就强调过一次,遇到两个维度权衡的时候,一定要先确定一个维度,再确定另一个维度。
如果两个维度一起考虑一定会顾此失彼。
对于本题相信大家困惑的点是先确定k还是先确定h呢,也就是究竟先按h排序呢,还是先按照k排序呢?
那就自己先试一下,先确定
如果按照k来从小到大排序,排完之后,会发现k的排列并不符合条件,身高也不符合条件,两个维度哪一个都没确定下来。
我们可以仔细想想,身高越高的人和矮的人,谁更容易排在前面呢?
应该是更高的人排在前面,因为身高越高,那比它高的人就少,所以他的k值也会越大。而越矮的人,就越容易有比他高的人站在他前面,所以k值也越容易大,所以越容易排在后面。
所以我们第一轮先按照身高排序,
此时我们可以确定一个维度了,就是身高,前面的节点一定都比本节点高!
那么只需要按照k为下标重新插入队列就可以了,为什么呢?
以图中{5,2} 为例:
按照身高排序之后,优先按身高高的people的k来插入,后序插入节点也不会影响前面已经插入的节点(因为后面来的人都矮,不会影响高个子前面有多少比他高的人,即不会影响k值),最终按照k的规则完成了队列。
所以在按照身高从大到小排序后:
局部最优:优先按身高高的people的k来插入。插入操作过后的people满足队列属性
全局最优:最后都做完插入操作,整个队列满足题目队列属性
局部最优可推出全局最优,找不出反例,那就试试贪心。
排序完的people: [[7,0], [7,1], [6,1], [5,0], [5,2],[4,4]]
插入的过程:
此时就按照题目的要求完成了重新排列。
C++代码如下:
// 版本一
class Solution {
public:
static bool cmp(const vector& a, const vector& b) {
if (a[0] == b[0]) return a[1] < b[1];
return a[0] > b[0];
}
vector> reconstructQueue(vector>& people) {
sort (people.begin(), people.end(), cmp);
vector> que;
for (int i = 0; i < people.size(); i++) {
int position = people[i][1];
que.insert(que.begin() + position, people[i]);
}
return que;
}
};
力扣题目链接(opens new window)
在二维空间中有许多球形的气球。对于每个气球,提供的输入是水平方向上,气球直径的开始和结束坐标。由于它是水平的,所以纵坐标并不重要,因此只要知道开始和结束的横坐标就足够了。开始坐标总是小于结束坐标。
一支弓箭可以沿着 x 轴从不同点完全垂直地射出。在坐标 x 处射出一支箭,若有一个气球的直径的开始和结束坐标为 xstart,xend, 且满足 xstart ≤ x ≤ xend,则该气球会被引爆。可以射出的弓箭的数量没有限制。 弓箭一旦被射出之后,可以无限地前进。我们想找到使得所有气球全部被引爆,所需的弓箭的最小数量。
给你一个数组 points ,其中 points [i] = [xstart,xend] ,返回引爆所有气球所必须射出的最小弓箭数。
示例 1:
示例 2:
示例 3:
示例 4:
示例 5:
提示:
一开始没看懂题意,看图就一下子明白了
可以看出首先第一组重叠气球,一定是需要一个箭,气球3的左边界大于了 第一组重叠气球的最小右边界,所以再需要一支箭来射气球3了。
每次以第i个为起点,判断第i个气球的右边界,最多能覆盖到多少个气球的左边界,但是每次多一个气球的时,其右边界也得取最小值。
(注意二维数组按第一个排序的方法。另外cmp函数要设为static)
C++代码如下:
class Solution {
private:
static bool cmp(const vector& a, const vector& b) {
return a[0] < b[0];
}
public:
int findMinArrowShots(vector>& points) {
if (points.size() == 0) return 0;
sort(points.begin(), points.end(), cmp);
int result = 1; // points 不为空至少需要一支箭
for (int i = 1; i < points.size(); i++) {
if (points[i][0] > points[i - 1][1]) { // 气球i和气球i-1不挨着,注意这里不是>=
result++; // 需要一支箭
}
else { // 气球i和气球i-1挨着
points[i][1] = min(points[i - 1][1], points[i][1]); // 更新重叠气球最小右边界
}
}
return result;
}
};
力扣题目链接(opens new window)
给定一个区间的集合,找到需要移除区间的最小数量,使剩余区间互不重叠。
注意: 可以认为区间的终点总是大于它的起点。 区间 [1,2] 和 [2,3] 的边界相互“接触”,但没有相互重叠。
示例 1:
示例 2:
示例 3:
题目要我们求最少删除多少个可以使得区间不重叠,换个思路,也就是说,我们希望尽可能的保留多那些不重叠的区间,保留的越多越好。
那么思考,什么样的区间越不容易与他人重叠呢?那首先,越短的区间越不容易与他人重叠。
另外一个思路就是,越处于边界的人,越不容易影响他人。
所以我们可以先以这个思路去做贪心算法。
我们先将区间按左边界排序,然后会有以下几种情况:
出现了重叠,且在前面的区间长度小于在后面的区间长度
力扣题目链接(opens new window)
字符串 S 由小写字母组成。我们要把这个字符串划分为尽可能多的片段,同一字母最多出现在一个片段中。返回一个表示每个字符串片段的长度的列表。
示例:
提示:
明白原理之后,代码并不复杂,如下:
class Solution {
public:
vector partitionLabels(string S) {
int hash[27] = {0}; // i为字符,hash[i]为字符出现的最后位置
for (int i = 0; i < S.size(); i++) { // 统计每一个字符最后出现的位置
hash[S[i] - 'a'] = i;
}
vector result;
int left = 0;
int right = 0;
for (int i = 0; i < S.size(); i++) {
right = max(right, hash[S[i] - 'a']); // 找到字符出现的最远边界
if (i == right) {
result.push_back(right - left + 1);
left = i + 1;
}
}
return result;
}
};
力扣题目链接(opens new window)
给定一个非负整数 N,找出小于或等于 N 的最大的整数,同时这个整数需要满足其各个位数上的数字是单调递增。
(当且仅当每个相邻位数上的数字 x 和 y 满足 x <= y 时,我们称这个整数是单调递增的。)
示例 1:
示例 2:
示例 3:
说明: N 是在 [0, 10^9] 范围内的一个整数。
暴力算法超时。
题目要求小于等于N的最大单调递增的整数,那么拿一个两位的数字来举例。
例如:98,一旦出现strNum[i - 1] > strNum[i]的情况(非单调递增),首先想让strNum[i - 1]--,然后strNum[i]给为9,这样这个整数就是89,即小于98的最大的单调递增整数。
这一点如果想清楚了,这道题就好办了。
此时是从前向后遍历还是从后向前遍历呢?
从前向后遍历的话,遇到strNum[i - 1] > strNum[i]的情况,让strNum[i - 1]减一,但此时如果strNum[i - 1]减一了,可能又小于strNum[i - 2]。
这么说有点抽象,举个例子,数字:332,从前向后遍历的话,那么就把变成了329,此时2又小于了第一位的3了,真正的结果应该是299。
那么从后向前遍历,就可以重复利用上次比较得出的结果了,从后向前遍历332的数值变化为:332 -> 329 -> 299
确定了遍历顺序之后,那么此时局部最优就可以推出全局,找不出反例,试试贪心。
于是写出了这样的代码:
class Solution {
public:
int monotoneIncreasingDigits(int n) {
if(n<=9)return n;
string strNum = to_string(n);
for(int i=strNum.size()-1;i>=1;i--){
if(strNum[i]429->399
但是可以发现,这种代码只会对相邻的做改动,保证这部分是正序的,但是假设前面又出现了一个逆序的,则不会对这部分进行改动,然而事实上,只有前面有一部分是逆序的,则这部分元素后面都得变为9.
例如346,和342一样,最终都得变成299
class Solution {
public:
int monotoneIncreasingDigits(int n) {
if(n<=9)return n;
string strNum = to_string(n);
int nineNumStartIndex;
for(int i=strNum.size()-1;i>=1;i--){
if(strNum[i]429->399