概述
- HashMap是 Key-Value 对映射的抽象接口,该映射不包括重复的键,即一个键对应一个值。
- 在HashMap中,其会根据hash算法来计算key-value的存储位置并进行快速存取。
- HashMap允许key和value为null
- 当Hash值计算元素位置时,可能会存在Hash冲突(Hash碰撞),HashMap是采用链表解决的。
- HashMap的实现,在JDK7中采用的是数组+链表,JDK8中采用的是数组+链表+红黑树。
HashMap源码解读(JDK8)
1.HashMap的结构模型图
2. 了解HashMap的基本属性
/**
* The default initial capacity - MUST be a power of two.
* 初始map的容量大小为16(容量必须是2的幂次倍)
*/
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
/**
* The maximum capacity, used if a higher value is implicitly specified
* by either of the constructors with arguments.
* MUST be a power of two <= 1<<30.
* Map的最大容量为2的30次方
* java中存放的是补码,1左移31位的为 16进制的0x80000000代表的是-2147483648–>所以最大只能是30
*/
static final int MAXIMUM_CAPACITY = 1 << 30;
/**
* The load factor used when none specified in constructor.
* Map 容量的记载因子,主要影响map的在什么时候扩容(此处为0.75,Map数组的容量大小的75%时开始扩容)
*/
static final float DEFAULT_LOAD_FACTOR = 0.75f;
/**
* The bin count threshold for using a tree rather than list for a
* bin. Bins are converted to trees when adding an element to a
* bin with at least this many nodes. The value must be greater
* than 2 and should be at least 8 to mesh with assumptions in
* tree removal about conversion back to plain bins upon
* shrinkage.
* 当桶(bucket)上的结点数大于这个值时会转成红黑树
*/
static final int TREEIFY_THRESHOLD = 8;
/**
* The bin count threshold for untreeifying a (split) bin during a
* resize operation. Should be less than TREEIFY_THRESHOLD, and at
* most 6 to mesh with shrinkage detection under removal.
* 当桶(bucket)上的结点数小于这个值时树转链表
*/
static final int UNTREEIFY_THRESHOLD = 6;
/**
* The smallest table capacity for which bins may be treeified.
* (Otherwise the table is resized if too many nodes in a bin.)
* Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
* between resizing and treeification thresholds.
* 桶中结构转化为红黑树对应的table的最小大小
*/
static final int MIN_TREEIFY_CAPACITY = 64;
/**
* The table, initialized on first use, and resized as
* necessary. When allocated, length is always a power of two.
* (We also tolerate length zero in some operations to allow
* bootstrapping mechanics that are currently not needed.)
* 存储元素的table数组,容量总是2的幂次倍
*/
transient Node[] table;
/**
* Holds cached entrySet(). Note that AbstractMap fields are used
* for keySet() and values().
* 存储具体元素的集合
*/
transient Set> entrySet;
/**
* The number of key-value mappings contained in this map.
* map的元素个数
*/
transient int size;
/**
* The number of times this HashMap has been structurally modified
* Structural modifications are those that change the number of mappings in
* the HashMap or otherwise modify its internal structure (e.g.,
* rehash). This field is used to make iterators on Collection-views of
* the HashMap fail-fast. (See ConcurrentModificationException).
* 每次扩容和更改map结构的计数器
*/
transient int modCount;
/**
* The next size value at which to resize (capacity * load factor).
* 临界值 当实际大小(容量*填充因子)超过临界值时,会进行扩容
*/
int threshold;
/**
* The load factor for the hash table.
* 加载因子
*/
final float loadFactor;
3. 了解HashMap的构造方法
/**
* 初始化map初始化的大小并制定加载因子的构造方法
* @param initialCapacity 初始容量大小
* @param loadFactor 加载因子
*/
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
this.threshold = tableSizeFor(initialCapacity);
}
/**
*
* @param initialCapacity 指定map的初始容量,默认加载因子为0.75
* @throws IllegalArgumentException if the initial capacity is negative.
*/
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
/**
* 默认初始容量为16,加载因子为0.75
*/
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
/**
* 加载因子为0.75,指定一个map构建一个初始化的map
*/
public HashMap(Map extends K, ? extends V> m) {
this.loadFactor = DEFAULT_LOAD_FACTOR;
putMapEntries(m, false);
}
4.Node节点类源码:
static class Node implements Map.Entry {
// hash值
final int hash;
// key值
final K key;
// value 值
V value;
Node next;
Node(int hash, K key, V value, Node next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
public final K getKey() { return key; }
public final V getValue() { return value; }
public final String toString() { return key + "=" + value; }
// 重写hashCode()方法
public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
}
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
// 重写equels方法
public final boolean equals(Object o) {
if (o == this)
return true;
if (o instanceof Map.Entry) {
Map.Entry,?> e = (Map.Entry,?>)o;
if (Objects.equals(key, e.getKey()) &&
Objects.equals(value, e.getValue()))
return true;
}
return false;
}
}
5.HashMap的put方法
/**
* 如果key存在,则value将替换原来的value值并返回被替换的那个值
* @param key key值
* @param value value值
* @return 返回的值为,key下被替换的值
*/
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
/**
* put key,value
* @param hash key的hash值
* @param key key值
* @param value value值
* @param onlyIfAbsent 如果为true,key存在时value不予替换
* @param evict if false, the table is in creation mode.
* @return previous value, or null if none
*/
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node[] tab; Node p; int n, i;
// 检验table是否为空或者length为0,如果是则调用resize方法进行初始化
if ((tab = table) == null || (n = tab.length) == 0)
// 数组扩容
n = (tab = resize()).length;
// 计算key对应的桶的位置是否存在存在元素,判断为null表示不存在
if ((p = tab[i = (n - 1) & hash]) == null)
// 在table[i]出创建一个新节点
tab[i] = newNode(hash, key, value, null);
else { // table[i] 处已经存在了元素(Hash碰撞)
Node e; K k;
// 如果key值已经存在,key不为null的情况下,e记录下当前key的node节点
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
// 如果桶中的引用类型为 TreeNode,则调用红黑树的插入方法
else if (p instanceof TreeNode)
e = ((TreeNode)p).putTreeVal(this, tab, hash, key, value);
else { // 链表模式
// 循环当前链表
for (int binCount = 0; ; ++binCount) {
// p.next 为null,则将p.next指向先插入的node
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
// 如果链表长度大于设定阈值长度时(默认为8),将链表转换成红黑树
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
// 跳出循环
break;
}
// key存在,直接跳出循环进行覆盖操作
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { // 表示key已经存在
V oldValue = e.value;
// 如果允许替换,替换原值
if (!onlyIfAbsent || oldValue == null)
e.value = value;
// 访问后回调
afterNodeAccess(e);
// 返回旧值
return oldValue;
}
}
// modCount加1
++modCount;
// size是否大于阈值,大于则进行扩容
if (++size > threshold)
resize();
// 插入后回调
afterNodeInsertion(evict);
return null;
}
6.扩容机制
resize方法的执行会伴随hash的重新分配,并且会遍历所有hash表中的元素,是非常耗时的,所以当我们在编写程序的时候尽量减少resize方法的执行。
/**
* Initializes or doubles table size. If null, allocates in
* accord with initial capacity target held in field threshold.
* Otherwise, because we are using power-of-two expansion, the
* elements from each bin must either stay at same index, or move
* with a power of two offset in the new table.
*
* @return the table
*/
final Node[] resize() {
// 记录原table数组
Node[] oldTab = table;
// 计算oldCap的大小
int oldCap = (oldTab == null) ? 0 : oldTab.length;
// 扩容临界值(cap * loadFactor)
int oldThr = threshold;
int newCap, newThr = 0;
// oldCap>0 表述map的buket数组已经初始化
if (oldCap > 0) {
// 如果已经达到容量最大值,不进行扩容(只能无情的进行Hash碰撞了)
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
// 扩容为原来的容量的2倍
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
// 左移一位(容量*2)
newThr = oldThr << 1; // double threshold
}
// 若不满足上面的oldCap > 0,表示数组还未初始化
// 若当前阈值不为0,则设置为当前阈值
// 这是因为HashMap有两个带参构造器,可以指定初始容量,
else if (oldThr > 0)
newCap = oldThr;
else {
// 初始化为默认的容量值
newCap = DEFAULT_INITIAL_CAPACITY;
// 容量界线 16* 0.75
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
// 扩容后的数组大小
Node[] newTab = (Node[])new Node[newCap];
table = newTab;
// 将老数组的数据重新复制与新数组中
if (oldTab != null) {
for (int j = 0; j < oldCap; ++j) {
Node e;
// j位置存在数据
if ((e = oldTab[j]) != null) {
// 清空数据
oldTab[j] = null;
// 若table数组的j位置只有一个节点,则直接将这个节点放入新数组,
// 使用 & 替代 % 计算出余数,即下标
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
// 红黑树节点-执行红黑树算法(hash冲突解决)
((TreeNode)e).split(this, newTab, j, oldCap);
else { // 链表数据小于限制数据-执行链表结构
// 创建两个头尾节点,表示两条链表,旧数据的一条链表可能被查分到两条链表上
// // 一条下标不变的链表,一条下标+oldCap
Node loHead = null, loTail = null;
Node hiHead = null, hiTail = null;
Node next;
do {
next = e.next;
// e.hash & oldCap==0 原链表的索引值
if ((e.hash & oldCap) == 0) {
// 如果最后一个元素为null,说明为头节点
if (loTail == null)
// 设置头结点为e
loHead = e;
else // 头节点已经设置了元素,直接将该元素设置在尾节点的next
loTail.next = e;
// 设置当前尾节点为e
loTail = e;
}
// 若与原容量做与运算,结果为1,表示将这个节点放入到新数组中,下标将改变
else {
if (hiTail == null) // 尾节点为空,说明该链表还没有值
// 设置头结点为e
hiHead = e;
else
// 头节点已经设置了元素,直接将该元素设置在尾节点的next
hiTail.next = e;
// 设置当前尾节点为e
hiTail = e;
}
} while ((e = next) != null);
// 所有节点遍历完后,判断下标不变的链表是否有节点在其中
if (loTail != null) {
// 将这条链表的最后一个节点的next指向null
loTail.next = null;
// 将链表loHead放入新数组的相同位置
newTab[j] = loHead;
}
// 将变化后的元素生成的新链表放在新的计算位置
if (hiTail != null) {
hiTail.next = null;
// 这条链表放入的位置要在原来的基础上加上oldCap
newTab[j + oldCap] = hiHead;
}
}
}
}
}
// 将新创建的map Tab 返回
return newTab;
}
注意: 这边有一个算法公式num % 2^n == num & (2^n - 1)
,所以上述resize方法执行的时候将求余运算转化为位&运算。
5.HashMap的get方法
// key获取元素
public V get(Object key) {
Node e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
/**
* Implements Map.get and related methods.
*
* @param key的hash值
* @param key值
* @return the node, or null if none
*/
final Node getNode(int hash, Object key) {
Node[] tab; Node first, e; int n; K k;
// 1、HashMap中存储数据的数组table不为null;
// 2、数组table长度大于0
// 3、table已经创建,且通过hash值计算出的节点存放位置有节点存在;
// 若上面三个条件都满足,才表示HashMap中可能有我们需要获取的元素
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
// 定位到元素在数组中的位置后,我们开始沿着这个位置的链表或者树开始遍历寻找
// 注:JDK1.8之前,HashMap的实现是数组+链表,到1.8开始变成数组+链表+红黑树
// 首先判断这个位置的第一个节点的key值是否与参数的key值相等,
// 若相等,则这个节点就是我们要找的节点,将其返回
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
// 遍历链表数据
if ((e = first.next) != null) {
// 如果节点为红黑树结构,遍历数结构查询
if (first instanceof TreeNode)
return ((TreeNode)first).getTreeNode(hash, key);
// 遍历链表查询
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
// 未查询到,返回null
return null;
}