- 数据挖掘的建模流程
慢跑的Liam
算法数据挖掘算法流程模型构建
1、定义数据挖掘目标任务理解指标确定2、数据取样建模抽样(大数据是用过滤后的全量数据)抽样之前需要衡量数据质量衡量的标准主要有以下几点:资料完整无缺,各类指标齐全数据准确无误,反映的都是正常状态下的数据数据抽样的方式:随机抽样等距抽样分层抽样从起始位置开始抽样分类抽样实时采集3、数据探索数据质量分析1.数据质量分析是数据挖掘分析结论有效性的基础2.缺失值分析3.异常值分析是用来检测数据是否有录入错
- 避免Hive和Spark生成HDFS小文件
穷目楼
数据库大数据大数据sparkhivehadoop
HDFS是为大数据设计的分布式文件系统,对大数据做了存储做了针对性的优化,但却不适合存储海量小文件。Hive和spark-sql是两个在常用的大数据计算分析引擎,用户直接以SQL进行大数据操作,底层的数据存储则多由HDFS提供。对小数据表的操作如果没做合适的处理则很容易导致大量的小文件在HDFS上生成,常见的一个情景是数据处理流程只有map过程,而流入map的原始数据数量较多,导致整个数据处理结束
- Linux 下Hive 安装(Remote Metastore Database 单节点)
A6-母婴小店-第6分店
HIVEhadoop
1、Linux下安装好mysql:Linux下Mysql安装2、启动hadoop集群:1、zk启动[root@node02~]#zkServer.shstartZooKeeperJMXenabledbydefaultUsingconfig:/opt/software/apache-zookeeper-3.6.2-bin/bin/../conf/zoo.cfgStartingzookeeper...
- 人工智能时代的伦理挑战与隐私保护
经海路大白狗
狗哥梦话职场人工智能
随着人工智能技术的迅猛发展,我们不得不正视其带来的伦理挑战和隐私保护问题。人工智能的应用已经深入到社会的方方面面,从医疗健康到金融服务,从教育到娱乐,无所不在。然而,与其广泛应用相伴随的是数据隐私泄露、算法歧视性和信息透明度不足等问题,这些问题不仅仅影响到个人权利,也损害了社会的公平和信任。1.AI技术的伦理挑战在AI技术快速发展的同时,一些伦理问题逐渐显现出来。例如,“大数据杀熟”现象,即通过分
- 大数据与人工智能:数据隐私与安全的挑战_ai 和 数据隐私
程序员七海
大数据人工智能安全
前言1.背景介绍随着人工智能(AI)和大数据技术的不断发展,我们的生活、工作和社会都在不断变化。这些技术为我们提供了许多好处,但同时也带来了一系列挑战,其中数据隐私和安全是最为关键的之一。数据隐私和安全问题的出现,主要是因为大数据技术的特点和人工智能算法的运行过程。大数据技术的特点包括数据量的庞大、数据类型的多样性、数据来源的多样性和数据更新的快速性。这些特点使得大数据技术具有强大的计算和分析能力
- Python大数据处理实验报告(三)
小李独爱秋
python开发语言pycharm大数据
实验目的本次实验的目的是练习使用Python编程语言和相关库进行网络爬虫和数据处理任务。具体来说,您将学习以下内容:使用Python中的requests库和BeautifulSoup库来爬取当当网某一本书的网页内容,并将其保存为html格式文件。学习使用Python中的requests库和正则表达式来爬取豆瓣网上某本书的前50条短评内容,并计算评分的平均值。了解如何使用Python中的reques
- 数据清洗与统计分析原理与代码实战案例讲解
AI天才研究院
ChatGPTAI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
《数据清洗与统计分析原理与代码实战案例讲解》关键词:数据清洗、统计分析、Python、R语言、数据预处理、数据分析、机器学习、大数据摘要:本文将深入探讨数据清洗与统计分析的原理,并通过丰富的实战案例展示如何在实际项目中应用这些技术。我们将详细讲解数据清洗的基本概念、流程和方法,以及统计分析的各种技术和应用。通过本文的学习,您将掌握数据清洗与统计分析的核心技能,提升数据处理和分析的能力,为后续的数据
- Kafka 迁移 AutoMQ 时 Flink 位点管理的挑战与解决方案
后端java
编辑导读:AutoMQ是一款与ApacheKafka100%完全兼容的新一代Kafka,可以做到至多10倍的成本降低和极速的弹性。凭借其与Kafka的完全兼容性可以与用户已有的Flink等大数据基础设施进行轻松整合。Flink是重要的流处理引擎,与Kafka有着密切的关系。本文重点介绍了当用户需要将生产Kafka集群迁移到AutoMQ时,如何处理好Flink的位点来确保整体迁移的平滑过渡。引言在云
- 大数据经典技术解析:Hadoop+Spark大数据分析原理与实践
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介大数据时代已经来临。随着互联网、移动互联网、物联网等新兴技术的出现,海量数据开始涌现。而在这些海量数据的基础上进行有效的处理,成为迫切需要解决的问题之一。ApacheHadoop和ApacheSpark是目前主流开源大数据框架。由于其易于部署、高容错性、并行计算能力强、适应数据量大、可编程、社区支持广泛等特点,大大提升了大数据应用的效率和效果。本文通过对Hado
- python读取redis大数据_大数据系列——Redis学习笔记
weixin_39661345
1.Redis的简介Redis是一个开源(BSD许可),内存存储的数据结构服务器,可用作数据库,高速缓存和消息队列代理它支持字符串、哈希表、列表、集合、有序集合,位图,hyperloglogs等数据类型内置复制、Lua脚本、LRU收回、事务以及不同级别磁盘持久化功能,同时通过RedisSentinel提供高可用,通过RedisCluster提供自动分区。简言之,Redis是一种面向“键/值”对数据
- 英伟达DeepStream学习笔记30——kafka和AMQP的区别
翟羽嚄
英伟达TX2/Xavier/deepstream开发kafka学习rabbitmq
作为消息队列来说,企业中选择mq的还是多数,因为像Rabbit,Rocket等mq中间件都属于很成熟的产品,性能一般但可靠性较强,而kafka原本设计的初衷是日志统计分析,现在基于大数据的背景下也可以做运营数据的分析统计,而redis的主要场景是内存数据库,作为消息队列来说可靠性太差,而且速度太依赖网络IO,在服务器本机上的速度较快,且容易出现数据堆积的问题,在比较轻量的场合下能够适用。Rabbi
- XLNet:超越BERT的新星
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
-XLNet:超越BERT的新星1.背景介绍1.1自然语言处理的重要性自然语言处理(NaturalLanguageProcessing,NLP)是人工智能领域的一个重要分支,旨在使计算机能够理解和生成人类语言。随着大数据时代的到来,海量的自然语言数据不断涌现,对NLP技术的需求与日俱增。NLP技术已广泛应用于机器翻译、智能问答、信息检索、情感分析等诸多领域,为人类生产和生活带来了巨大便利。1.2预
- Hadoop基础知识及部署模式
2301_82242502
hadoop大数据分布式
一、Hadoop是什么Hadoop是一个由Apache基金会所开发的分布式系统基础架构。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力,解决海量数据的存储及海量数据的分析计算问题。广义上的Hadoop是指Hadoop的整个技术生态圈;狭义上的Hadoop指的是其核心三大组件,包括HDFS、YARN及MapReduce.二、Hadoop的发展史Hadoop起源于Lucen
- 探讨Hadoop的基础架构及其核心特点
xx155802862xx
hadoop大数据分布式
Hadoop是一个开源软件框架,用于存储和处理大规模数据集。它是Apache软件基金会下的一个项目,灵感来源于Google的两篇论文:一篇关于Google文件系统(GFS),另一篇关于MapReduce。Hadoop设计用于从单台服务器扩展到数千台机器,每台机器提供局部计算和存储。而不仅仅是处理大数据,Hadoop的真正价值在于其对于数据的高容错性、可扩展性以及相对低成本的存储和处理能力。以下是探
- Java应用实战:从入门到精通的全面指南
听风吟丶
java开发语言
引言Java,作为一门跨平台的高级编程语言,自1995年由SunMicrosystems推出以来,凭借其“一次编写,到处运行”的特性,迅速在全球范围内获得了广泛的认可和应用。无论是企业级应用、移动应用开发,还是大数据处理、云计算平台,Java都扮演着举足轻重的角色。本篇文章旨在为初学者提供一条清晰的学习路径,同时也为有一定基础的开发者提供进阶的指导,帮助大家从入门走向精通。一、Java基础篇:搭建
- Hadoop毕业设计:计算机毕业设计选题汇总(建议收藏)
会写代码的羊
毕设选题hadoop课程设计大数据毕设选题毕设题目数据分析
文章目录前言基于Hadoop的毕业设计选题毕设作品展示前言2025全新毕业设计项目博主介绍:✌全网粉丝10W+,CSDN全栈领域优质创作者,博客之星、掘金/华为云/阿里云等平台优质作者。精彩专栏推荐订阅计算机毕业设计精品项目案例-500套基于JavaSpringBoot的微信校园二手交易小程序平台开发系列(一)基于校园二手物品交易小程序系统设计与实现系列(二)基于云开发微信小程序二手闲置商城校园跳
- 大数据技术学习框架(更新中......)
小技工丨
大数据技术学习大数据学习
Hadoop相关HDFS分布式文件系统MR(MapReduce)离线数据处理MR-图解YARN集群资源管理ZooKeeperZooKeeper分布式协调框架Hive相关Hive-01之数仓、架构、数据类型、DDL、内外部表Hive-02之分桶表、数据导入导出、静动态分区、查询、排序、hiveserver2Hive-03之传参、常用函数、explode、lateralview、行专列、列转行、UDF
- 【自学笔记】大数据基础知识点总览-持续更新
Long_poem
笔记大数据
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录大数据基础知识点总览1.大数据概述2.大数据处理技术3.数据仓库与数据挖掘4.大数据分析与可视化5.大数据平台与架构6.大数据安全与隐私总结大数据基础知识点总览1.大数据概述定义:大数据是指数据量巨大、类型多样、处理速度快的数据集合。特征:4V(Volume、Velocity、Variety、Veracity)描述了大数据的主
- 大数据处理实践探索 ---- 笔试面试题:ElasticSearch
shiter
大数据机器学习实践探索笔试面试题elasticsearch
ES中的倒排索引是什么?传统的检索方式是通过文章,逐个遍历找到对应关键词的位置。倒排索引,是通过分词策略,形成了词和文章的映射关系表,也称倒排表,这种词典+映射表即为倒排索引。其中词典中存储词元,倒排表中存储该词元在哪些文中出现的位置。有了倒排索引,就能实现O(1)时间复杂度的效率检索文章了,极大的提高了检索效率。加分项:倒排索引的底层实现是基于:FST(FiniteStateTransducer
- .Net Core HttpClient处理响应压缩
溪源More
pythonjava编程语言springhttp
前言在上篇文章[ASP.NETCore中的响应压缩]中我们谈到了在ASP.NETCore服务端处理关于响应压缩的请求,服务端的主要工作就是根据Content-Encoding头信息判断采用哪种方式压缩并返回。之前在群里有人问道过,现在的网络带宽这么高了还有必要在服务端针对请求进行压缩吗?确实,如今分布式和负载均衡技术这么成熟,很多需要处理高并发大数据的场景都可以通过增加服务器节点来进行。但是,在资
- 破解高并发难题:百万到亿级系统架构实战指南
繁华之中悟静
架构数据结构软件需求软件工程微服务软件构建
参考书籍《架构真意-企业级应用架构设计方法论与实践》作者范刚孙玄机械工业出版社本书通过架构设计方法论、分布式架构设计与实践和大数据架构设计三部分内容,系统阐述了在软件开发的时候,如何设计软件架构,并且对1000万级、5000万级、亿级等不同量级流量的系统平台给出了不同的技术架构方案。书籍对于想快速熟悉软件架构构建思想和理念的从业者,有较大的帮助。第一部分架构设计方法论架构设计按照“5视图法”分为逻
- 【update 更新数据语法合集】.NET开源ORM框架 SqlSugar 系列
m0_74823595
面试学习路线阿里巴巴.net开源
系列文章目录文章目录系列文章目录前言??一、实体对象更新1.1单条与批量1.2不更新某列1.3只更新某列1.4NULL列不更新1.5无主键/指定列1.6更新添加条件1.7大数据更新1.8重新赋值1:list中的值修改1.9重新赋值2:列中的值+1二、根据表达式更新(像SQL)2.1指定多个字段更新2.2一个字段更新2.3字段+1更新2.4Set语法是支持多个的2.5批量更新IN2.6表达式无实体更
- Ubuntu从零创建Hadoop集群
爱编程的王小美
大数据专业知识系列ubuntuhadooplinux
目录前言前提准备1.设置网关和网段2.查看虚拟机IP及检查网络3.Ubuntu相关配置镜像源配置下载vim编辑器4.设置静态IP和SSH免密(可选)设置静态IPSSH免密5.JDK环境部署6.Hadoop环境部署7.配置Hadoop配置文件HDFS集群规划HDFS集群配置1.配置works文件2.配置hadoop-env.sh文件3.配置core-site.xml文件4.配置hdfs-site.x
- 爬虫实战分享:高效爬取汽车官方销售排行榜的技术方案
威哥说编程
python网络爬虫
随着大数据技术的飞速发展,爬虫技术在各行各业中得到了广泛应用。汽车行业作为一个信息密集型行业,销售数据、排行榜和车型趋势等内容成为了汽车公司、市场研究者和消费者关注的重点。爬虫技术为这些数据的收集和分析提供了强有力的支持。本文将介绍如何通过爬虫技术高效爬取某汽车官方销售排行榜,并讨论常见的技术难点与解决方案。1.目标与需求分析我们的目标是从某汽车官方网站上高效地爬取官方销售排行榜。爬取内容包括:销
- 入门Apache Spark:基础知识和架构解析
juer_0001
javaspark
介绍ApacheSparkSpark的历史和背景ApacheSpark是一种快速、通用、可扩展的大数据处理引擎,最初由加州大学伯克利分校的AMPLab开发,于2010年首次推出。它最初设计用于支持分布式计算框架MapReduce的交互式查询,但逐渐发展成为一种更通用的数据处理引擎,能够处理数据流、批处理和机器学习等工作负载。Spark的特点和优势Spark是一种快速、通用、可扩展的大数据处理框架,
- 用大白话解释数据库分库分表sharding是什么 有什么用 怎么用
心心祥蓉
数据库
Sharding是什么?Sharding(分片)就像把一整个图书馆的书拆开放到多个小房间,每个房间只存一部分书。这样找书的人不用挤在一个大厅里翻找,效率更高。技术定义:把一个大数据库拆分成多个小数据库(分片),分散到不同服务器上,解决单台服务器性能不足的问题。比如原本一个数据库存10亿条用户数据,拆成10个库,每个存1亿条。场景类比:图书馆分房间:按书的类型(科技、文学)或首字母分房间。电商分订单
- 云计算相关工作岗位有哪些,薪资怎么样?
欧米说云
云计算腾讯云阿里云云计算
云计算、大数据、人工智能作为新一代信息技术产业,未来发展前景不可估量,就业前途一片光明,自然薪资待遇也不会差。随着亚马逊云、阿里云、华为云等云厂商的快速发展,也产生了大量的岗位需求,同时厂商为了增强自身影响力,也设置了很多证书考试,acp、ace、hcip、hcie等等。在这里想进入相关行业大厂从事云相关的工作的同学可以先考取大厂的对应证书,增加自己简历含金量,从而进入大厂。免费领取阿里云华为认证
- Flink架构体系:深入解析Apache Flink的架构与工作原理
雨中徜徉的思绪漫溢
flink架构apache大数据
Flink架构体系:深入解析ApacheFlink的架构与工作原理ApacheFlink是一种高性能、分布式、流式处理引擎,被广泛应用于大数据处理和实时分析场景。本文将深入解析Flink的架构体系和工作原理,包括核心组件和数据流处理过程,并提供相应的示例代码。Flink架构概述ApacheFlink的架构基于流式处理模型,它通过将数据流划分为有向无环图(DAG)的形式,将大规模的数据处理任务划分为
- 《Kafka 理解: Broker、Topic 和 Partition》
频繁输入,积极输出
kafka分布式
Kafka核心架构解析:从概念到实践Kafka是一个分布式流处理平台,广泛应用于日志收集、实时数据分析和事件驱动架构。本文将从Kafka的核心组件、工作原理、实际应用场景等方面进行详细解析,帮助读者深入理解Kafka的架构设计及其在大数据领域的重要性。1.Kafka的背景与应用场景1.1Kafka的背景Kafka最初由LinkedIn开发,用于解决其大规模数据处理的挑战。2011年,Kafka开源
- 11个大数据在日常生活中的应用场景
雪兽软件
科技前沿大数据
在我们的日常生活围绕着智能手机、智能相机、智能标签、智能手表和智能扬声器等小工具的时代,从这些不同的数字来源中积累了大量数据。然而,人们应该如何分析和检查这些大量令人困惑的数据呢?这就是大数据发挥魔力的地方。大数据技术和工具的出现有助于应对这些挑战,使世界认识到该技术提供的广泛应用,企业从中受益以进行扩张。什么是大数据?通俗地说,大数据描述了每天吞噬企业的大量结构化和非结构化数据。它主要被定义为三
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s