代码随想录算法训练营第46天 | ● 139.单词拆分 ● 关于多重背包,你该了解这些! ● 背包问题总结篇!

文章目录

  • 前言
  • 一、139.单词拆分
  • 二、关于多重背包,你该了解这些!
  • 三、背包问题总结篇!
  • 总结

前言

背包完结。


一、139.单词拆分

 

动规五部曲分析如下:

  1. 确定dp数组以及下标的含义

dp[i] : 字符串长度为i的话,dp[i]为true,表示可以拆分为一个或多个在字典中出现的单词

  1. 确定递推公式

如果确定dp[j] 是true,且 [j, i] 这个区间的子串出现在字典里,那么dp[i]一定是true。(j < i )。

所以递推公式是 if([j, i] 这个区间的子串出现在字典里 && dp[j]是true) 那么 dp[i] = true。

  1. dp数组如何初始化

从递推公式中可以看出,dp[i] 的状态依靠 dp[j]是否为true,那么dp[0]就是递推的根基,dp[0]一定要为true,否则递推下去后面都都是false了。那么dp[0]有没有意义呢?dp[0]表示如果字符串为空的话,说明出现在字典里。但题目中说了“给定一个非空字符串 s” 所以测试数据中不会出现i为0的情况,那么dp[0]初始为true完全就是为了推导公式。

下标非0的dp[i]初始化为false,只要没有被覆盖说明都是不可拆分为一个或多个在字典中出现的单词。

  1. 确定遍历顺序

题目中说是拆分为一个或多个在字典中出现的单词,所以这是完全背包。还要讨论两层for循环的前后顺序。

如果求组合数就是外层for循环遍历物品,内层for遍历背包

如果求排列数就是外层for遍历背包,内层for循环遍历物品。而本题其实我们求的是排列数,为什么呢。 拿 s = "applepenapple", wordDict = ["apple", "pen"] 举例。"apple", "pen" 是物品,那么我们要求 物品的组合一定是 "apple" + "pen" + "apple" 才能组成 "applepenapple"。"apple" + "apple" + "pen" 或者 "pen" + "apple" + "apple" 是不可以的,那么我们就是强调物品之间顺序。所以说,本题一定是 先遍历 背包,再遍历物品。

  1. 举例推导dp[i]

set.contains()代表了对于物品是否为wordDirt的字符串的判断;

class Solution {
    public boolean wordBreak(String s, List wordDict) {
        HashSet set = new HashSet<>(wordDict);
        boolean[] valid = new boolean[s.length()+1];
        valid[0] = true;

        for(int i = 1;i <=s.length();i++){//背包
            for(int j = 0;j < i && !valid[i];j++){//物品
                if(set.contains(s.substring(j,i)) && valid[j]){
                    valid[i] = true;
                }
            }
        }

        return valid[s.length()];
    }
}

二、关于多重背包,你该了解这些!

  • 时间复杂度:O(m × n × k),m:物品种类个数,n背包容量,k单类物品数量

两种:1.改变物体数量为01背包格式  2.改变遍历个数

public void testMultiPack1(){
    // 版本一:改变物品数量为01背包格式
    List weight = new ArrayList<>(Arrays.asList(1, 3, 4));
    List value = new ArrayList<>(Arrays.asList(15, 20, 30));
    List nums = new ArrayList<>(Arrays.asList(2, 3, 2));
    int bagWeight = 10;

    for (int i = 0; i < nums.size(); i++) {
        while (nums.get(i) > 1) { // 把物品展开为i
            weight.add(weight.get(i));
            value.add(value.get(i));
            nums.set(i, nums.get(i) - 1);
        }
    }

    int[] dp = new int[bagWeight + 1];
    for(int i = 0; i < weight.size(); i++) { // 遍历物品
        for(int j = bagWeight; j >= weight.get(i); j--) { // 遍历背包容量
            dp[j] = Math.max(dp[j], dp[j - weight.get(i)] + value.get(i));
        }
        System.out.println(Arrays.toString(dp));
    }
}

public void testMultiPack2(){
    // 版本二:改变遍历个数
    int[] weight = new int[] {1, 3, 4};
    int[] value = new int[] {15, 20, 30};
    int[] nums = new int[] {2, 3, 2};
    int bagWeight = 10;

    int[] dp = new int[bagWeight + 1];
    for(int i = 0; i < weight.length; i++) { // 遍历物品
        for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
            // 以上为01背包,然后加一个遍历个数
            for (int k = 1; k <= nums[i] && (j - k * weight[i]) >= 0; k++) { // 遍历个数
                dp[j] = Math.max(dp[j], dp[j - k * weight[i]] + k * value[i]);
            }
            System.out.println(Arrays.toString(dp));
        }
    }
}

三、背包问题总结篇! 

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

重点:

背包递推公式:

问能否能装满背包(或者最多装多少):dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]); ,对应题目如下:

  • 动态规划:416.分割等和子集
  • (opens new window)
  • 动态规划:1049.最后一块石头的重量 II
  • (opens new window)

问装满背包有几种方法:dp[j] += dp[j - nums[i]] ,对应题目如下:

  • 动态规划:494.目标和
  • (opens new window)
  • 动态规划:518. 零钱兑换 II
  • (opens new window)
  • 动态规划:377.组合总和Ⅳ
  • (opens new window)
  • 动态规划:70. 爬楼梯进阶版(完全背包)
  • (opens new window)

问背包装满最大价值:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]); ,对应题目如下:

  • 动态规划:474.一和零
  • (opens new window)

问装满背包所有物品的最小个数:dp[j] = min(dp[j - coins[i]] + 1, dp[j]); ,对应题目如下:

  • 动态规划:322.零钱兑换
  • (opens new window)
  • 动态规划:279.完全平方数
  • 一、139.单词拆分

遍历顺序:

01背包:

二维dp数组01背包先遍历物品还是先遍历背包都是可以的,且第二层for循环是从小到大遍历。一维dp数组01背包只能先遍历物品再遍历背包容量,且第二层for循环是从大到小遍历。

完全背包:

纯完全背包的一维dp数组实现,先遍历物品还是先遍历背包都是可以的,且第二层for循环是从小到大遍历。

但是仅仅是纯完全背包的遍历顺序是这样的,题目稍有变化,两个for循环的先后顺序就不一样了。

如果求组合数就是外层for循环遍历物品,内层for遍历背包

如果求排列数就是外层for遍历背包,内层for循环遍历物品


总结

背包完结。

你可能感兴趣的:(算法)