代码随想录算法训练营第四十六天|● 139.单词拆分 ● 关于多重背包,你该了解这些! ● 背包问题总结篇!

动态规划:

一、139.单词拆分

题目:

给定一个非空字符串 s 和一个包含非空单词的列表 wordDict,判定 s 是否可以被空格拆分为一个或多个在字典中出现的单词。

说明:

拆分时可以重复使用字典中的单词。

你可以假设字典中没有重复的单词。

示例 1:

  • 输入: s = "leetcode", wordDict = ["leet", "code"]
  • 输出: true
  • 解释: 返回 true 因为 "leetcode" 可以被拆分成 "leet code"。

示例 2:

  • 输入: s = "applepenapple", wordDict = ["apple", "pen"]
  • 输出: true
  • 解释: 返回 true 因为 "applepenapple" 可以被拆分成 "apple pen apple"。
  • 注意你可以重复使用字典中的单词。

示例 3:

  • 输入: s = "catsandog", wordDict = ["cats", "dog", "sand", "and", "cat"]
  • 输出: false

思路:

单词就是物品,字符串s就是背包,单词能否组成字符串s,就是问物品能不能把背包装满。

拆分时可以重复使用字典中的单词,说明就是一个完全背包!

动规五部曲分析如下:

1、确定dp数组以及下标的含义

dp[i] : 字符串长度为i的话,dp[i]为true,表示可以拆分为一个或多个在字典中出现的单词

2、确定递推公式

如果确定dp[j] 是true,且 [j, i] 这个区间的子串出现在字典里,那么dp[i]一定是true。(j < i )。

所以递推公式是 if([j, i] 这个区间的子串出现在字典里 && dp[j]是true) 那么 dp[i] = true。

3、dp数组如何初始化

从递推公式中可以看出,dp[i] 的状态依靠 dp[j]是否为true,那么dp[0]就是递推的根基,dp[0]一定要为true,否则递推下去后面都都是false了。

那么dp[0]有没有意义呢?

dp[0]表示如果字符串为空的话,说明出现在字典里。

但题目中说了“给定一个非空字符串 s” 所以测试数据中不会出现i为0的情况,那么dp[0]初始为true完全就是为了推导公式。

下标非0的dp[i]初始化为false,只要没有被覆盖说明都是不可拆分为一个或多个在字典中出现的单词。

4、确定遍历顺序

题目中说是拆分为一个或多个在字典中出现的单词,所以这是完全背包。

还要讨论两层for循环的前后顺序。

如果求组合数就是外层for循环遍历物品,内层for遍历背包

如果求排列数就是外层for遍历背包,内层for循环遍历物品

我在这里做一个总结:

本题其实我们求的是排列数,为什么呢。 拿 s = "applepenapple", wordDict = ["apple", "pen"] 举例。

"apple", "pen" 是物品,那么我们要求 物品的组合一定是 "apple" + "pen" + "apple" 才能组成 "applepenapple"。

"apple" + "apple" + "pen" 或者 "pen" + "apple" + "apple" 是不可以的,那么我们就是强调物品之间顺序。

所以说,本题一定是 先遍历 背包,再遍历物品。

5、举例推导dp[i]

动态规划的部分易错:

遍历顺序;

substring是左闭右开

class Solution {
    public boolean wordBreak(String s, List wordDict) {
        HashSet set = new HashSet<>(wordDict);
        boolean[] valid = new boolean[s.length() + 1];
        valid[0] = true;

        for (int i = 1; i <= s.length(); i++) {
            for (int j = 0; j < i && !valid[i]; j++) {
                if (set.contains(s.substring(j, i)) && valid[j]) {
                    valid[i] = true;
                }
            }
        }

        return valid[s.length()];
    }
}
// 回溯法+记忆化
class Solution {
    private Set set;
    private int[] memo;
    public boolean wordBreak(String s, List wordDict) {
        memo = new int[s.length()];
        set = new HashSet<>(wordDict);
        return backtracking(s, 0);
    }

    public boolean backtracking(String s, int startIndex) {
        // System.out.println(startIndex);
        if (startIndex == s.length()) {
            return true;
        }
        if (memo[startIndex] == -1) {
            return false;
        }

        for (int i = startIndex; i < s.length(); i++) {
            String sub = s.substring(startIndex, i + 1);
	    // 拆分出来的单词无法匹配
            if (!set.contains(sub)) {
                continue;                
            }
            boolean res = backtracking(s, i + 1);
            if (res) return true;
        }
        // 这里是关键,找遍了startIndex~s.length()也没能完全匹配,标记从startIndex开始不能找到
        memo[startIndex] = -1;
        return false;
    }
}

二、关于多重背包,你该了解这些!

有N种物品和一个容量为V 的背包。第i种物品最多有Mi件可用,每件耗费的空间是Ci ,价值是Wi 。求解将哪些物品装入背包可使这些物品的耗费的空间 总和不超过背包容量,且价值总和最大。

多重背包和01背包是非常像的, 为什么和01背包像呢?

每件物品最多有Mi件可用,把Mi件摊开,其实就是一个01背包问题了。

暂不细学,目前用不上,之后进阶再来。

三、背包问题总结篇!

最重要的就是动态规划五部曲:

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

代码随想录

你可能感兴趣的:(算法)