文本分类;数据增强;模型微调 2020-02-25

文本分类

文本情感分类数据集 使用循环神经网络进行情感分类 使用卷积神经网络进行情感分类
文本分类是自然语言处理的一个常见任务,它把一段不定长的文本序列变换为文本的类别。本节关注它的一个子问题:使用文本情感分类来分析文本作者的情绪。这个问题也叫情感分析,并有着广泛的应用。

同搜索近义词和类比词一样,文本分类也属于词嵌入的下游应用。在本节中,我们将应用预训练的词向量和含多个隐藏层的双向循环神经网络与卷积神经网络,来判断一段不定长的文本序列中包含的是正面还是负面的情绪。后续内容将从以下几个方面展开:

文本情感分类数据集
使用循环神经网络进行情感分类
使用卷积神经网络进行情感分类

import collections
import os
import random
import time
from tqdm import tqdm
import torch
from torch import nn
import torchtext.vocab as Vocab
import torch.utils.data as Data
import torch.nn.functional as F
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

文本情感分类数据

我们使用斯坦福的IMDb数据集(Stanford’s Large Movie Review Dataset)作为文本情感分类的数据集。

读取数据

数据集文件夹结构:

| aclImdb_v1
    | train
    |   | pos
    |   |   | 0_9.txt  
    |   |   | 1_7.txt
    |   |   | ...
    |   | neg
    |   |   | 0_3.txt
    |   |   | 1_1.txt
    |   | ...
    | test
    |   | pos
    |   | neg
    |   | ...
    | ...
def read_imdb(folder='train', data_root="/home/kesci/input/IMDB2578/aclImdb_v1/aclImdb"):
    data = []
    for label in ['pos', 'neg']:
        folder_name = os.path.join(data_root, folder, label)
        for file in tqdm(os.listdir(folder_name)):
            with open(os.path.join(folder_name, file), 'rb') as f:
                review = f.read().decode('utf-8').replace('\n', '').lower()
                data.append([review, 1 if label == 'pos' else 0])
    random.shuffle(data)
    return data

DATA_ROOT = "/home/kesci/input/IMDB2578/aclImdb_v1/"
data_root = os.path.join(DATA_ROOT, "aclImdb")
train_data, test_data = read_imdb('train', data_root), read_imdb('test', data_root)

# 打印训练数据中的前五个sample
for sample in train_data[:5]:
    print(sample[1], '\t', sample[0][:50])

100%|██████████| 12500/12500 [00:00<00:00, 15484.71it/s]
100%|██████████| 12500/12500 [00:00<00:00, 53658.60it/s]
100%|██████████| 12500/12500 [00:00<00:00, 53187.52it/s]
100%|██████████| 12500/12500 [00:00<00:00, 52966.52it/s]
1 i'm 60 years old, a guitarist, (lead/rhythm), and
0 it's the worst movie i've ever seen. the action is
1 i have seen the movie holes and say that it has to
1 i just saw this last night, it was broadcast on th
0 ...well, pop this into the dvd, waste an hour and

预处理数据

读取数据后,我们先根据文本的格式进行单词的切分,再利用 torchtext.vocab.Vocab创建词典。

def get_tokenized_imdb(data):
    '''
    @params:
        data: 数据的列表,列表中的每个元素为 [文本字符串,0/1标签] 二元组
    @return: 切分词后的文本的列表,列表中的每个元素为切分后的词序列
    '''
    def tokenizer(text):
        return [tok.lower() for tok in text.split(' ')]
    
    return [tokenizer(review) for review, _ in data]

def get_vocab_imdb(data):
    '''
    @params:
        data: 同上
    @return: 数据集上的词典,Vocab 的实例(freqs, stoi, itos)
    '''
    tokenized_data = get_tokenized_imdb(data)
    counter = collections.Counter([tk for st in tokenized_data for tk in st])
    return Vocab.Vocab(counter, min_freq=5)

vocab = get_vocab_imdb(train_data)
print('# words in vocab:', len(vocab))

words in vocab: 46152

词典和词语的索引创建好后,就可以将数据集的文本从字符串的形式转换为单词下标序列的形式,以待之后的使用。

def preprocess_imdb(data, vocab):
    '''
    @params:
        data: 同上,原始的读入数据
        vocab: 训练集上生成的词典
    @return:
        features: 单词下标序列,形状为 (n, max_l) 的整数张量
        labels: 情感标签,形状为 (n,) 的0/1整数张量
    '''
    max_l = 500  # 将每条评论通过截断或者补0,使得长度变成500

    def pad(x):
        return x[:max_l] if len(x) > max_l else x + [0] * (max_l - len(x))

    tokenized_data = get_tokenized_imdb(data)
    features = torch.tensor([pad([vocab.stoi[word] for word in words]) for words in tokenized_data])
    labels = torch.tensor([score for _, score in data])
    return features, labels

创建数据迭代器

利用 torch.utils.data.TensorDataset,可以创建 PyTorch 格式的数据集,从而创建数据迭代器。

train_set = Data.TensorDataset(*preprocess_imdb(train_data, vocab))
test_set = Data.TensorDataset(*preprocess_imdb(test_data, vocab))

# 上面的代码等价于下面的注释代码
# train_features, train_labels = preprocess_imdb(train_data, vocab)
# test_features, test_labels = preprocess_imdb(test_data, vocab)
# train_set = Data.TensorDataset(train_features, train_labels)
# test_set = Data.TensorDataset(test_features, test_labels)

# len(train_set) = features.shape[0] or labels.shape[0]
# train_set[index] = (features[index], labels[index])

batch_size = 64
train_iter = Data.DataLoader(train_set, batch_size, shuffle=True)
test_iter = Data.DataLoader(test_set, batch_size)

for X, y in train_iter:
    print('X', X.shape, 'y', y.shape)
    break
print('#batches:', len(train_iter))

X torch.Size([64, 500]) y torch.Size([64])

batches: 391

使用循环神经网络

双向循环神经网络

在“双向循环神经网络”一节中,我们介绍了其模型与前向计算的公式,这里简单回顾一下:


class BiRNN(nn.Module):
    def __init__(self, vocab, embed_size, num_hiddens, num_layers):
        '''
        @params:
            vocab: 在数据集上创建的词典,用于获取词典大小
            embed_size: 嵌入维度大小
            num_hiddens: 隐藏状态维度大小
            num_layers: 隐藏层个数
        '''
        super(BiRNN, self).__init__()
        self.embedding = nn.Embedding(len(vocab), embed_size)
        
        # encoder-decoder framework
        # bidirectional设为True即得到双向循环神经网络
        self.encoder = nn.LSTM(input_size=embed_size, 
                                hidden_size=num_hiddens, 
                                num_layers=num_layers,
                                bidirectional=True)
        self.decoder = nn.Linear(4*num_hiddens, 2) # 初始时间步和最终时间步的隐藏状态作为全连接层输入
        
    def forward(self, inputs):
        '''
        @params:
            inputs: 词语下标序列,形状为 (batch_size, seq_len) 的整数张量
        @return:
            outs: 对文本情感的预测,形状为 (batch_size, 2) 的张量
        '''
        # 因为LSTM需要将序列长度(seq_len)作为第一维,所以需要将输入转置
        embeddings = self.embedding(inputs.permute(1, 0)) # (seq_len, batch_size, d)
        # rnn.LSTM 返回输出、隐藏状态和记忆单元,格式如 outputs, (h, c)
        outputs, _ = self.encoder(embeddings) # (seq_len, batch_size, 2*h)
        encoding = torch.cat((outputs[0], outputs[-1]), -1) # (batch_size, 4*h)
        outs = self.decoder(encoding) # (batch_size, 2)
        return outs

embed_size, num_hiddens, num_layers = 100, 100, 2
net = BiRNN(vocab, embed_size, num_hiddens, num_layers)

加载预训练的词向量

由于预训练词向量的词典及词语索引与我们使用的数据集并不相同,所以需要根据目前的词典及索引的顺序来加载预训练词向量。

cache_dir = "/home/kesci/input/GloVe6B5429"
glove_vocab = Vocab.GloVe(name='6B', dim=100, cache=cache_dir)

def load_pretrained_embedding(words, pretrained_vocab):
    '''
    @params:
        words: 需要加载词向量的词语列表,以 itos (index to string) 的词典形式给出
        pretrained_vocab: 预训练词向量
    @return:
        embed: 加载到的词向量
    '''
    embed = torch.zeros(len(words), pretrained_vocab.vectors[0].shape[0]) # 初始化为0
    oov_count = 0 # out of vocabulary
    for i, word in enumerate(words):
        try:
            idx = pretrained_vocab.stoi[word]
            embed[i, :] = pretrained_vocab.vectors[idx]
        except KeyError:
            oov_count += 1
    if oov_count > 0:
        print("There are %d oov words." % oov_count)
    return embed

net.embedding.weight.data.copy_(load_pretrained_embedding(vocab.itos, glove_vocab))
net.embedding.weight.requires_grad = False # 直接加载预训练好的, 所以不需要更新它

训练模型

训练时可以调用之前编写的 train 及 evaluate_accuracy 函数。

def evaluate_accuracy(data_iter, net, device=None):
    if device is None and isinstance(net, torch.nn.Module):
        device = list(net.parameters())[0].device 
    acc_sum, n = 0.0, 0
    with torch.no_grad():
        for X, y in data_iter:
            if isinstance(net, torch.nn.Module):
                net.eval()
                acc_sum += (net(X.to(device)).argmax(dim=1) == y.to(device)).float().sum().cpu().item()
                net.train()
            else:
                if('is_training' in net.__code__.co_varnames):
                    acc_sum += (net(X, is_training=False).argmax(dim=1) == y).float().sum().item() 
                else:
                    acc_sum += (net(X).argmax(dim=1) == y).float().sum().item() 
            n += y.shape[0]
    return acc_sum / n

def train(train_iter, test_iter, net, loss, optimizer, device, num_epochs):
    net = net.to(device)
    print("training on ", device)
    batch_count = 0
    for epoch in range(num_epochs):
        train_l_sum, train_acc_sum, n, start = 0.0, 0.0, 0, time.time()
        for X, y in train_iter:
            X = X.to(device)
            y = y.to(device)
            y_hat = net(X)
            l = loss(y_hat, y) 
            optimizer.zero_grad()
            l.backward()
            optimizer.step()
            train_l_sum += l.cpu().item()
            train_acc_sum += (y_hat.argmax(dim=1) == y).sum().cpu().item()
            n += y.shape[0]
            batch_count += 1
        test_acc = evaluate_accuracy(test_iter, net)
        print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f, time %.1f sec'
              % (epoch + 1, train_l_sum / batch_count, train_acc_sum / n, test_acc, time.time() - start))

由于嵌入层的参数是不需要在训练过程中被更新的,所以我们利用 filter 函数和 lambda 表达式来过滤掉模型中不需要更新参数的部分。

lr, num_epochs = 0.01, 5
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, net.parameters()), lr=lr)
loss = nn.CrossEntropyLoss()

train(train_iter, test_iter, net, loss, optimizer, device, num_epochs)

training on cpu
epoch 1, loss 0.9336, train acc 0.658, test acc 0.788, time 361.3 sec
epoch 2, loss 0.2986, train acc 0.811, test acc 0.744, time 364.4 sec
epoch 3, loss 0.1692, train acc 0.879, test acc 0.791, time 353.2 sec
epoch 4, loss 0.1331, train acc 0.910, test acc 0.782, time 361.1 sec
epoch 5, loss 0.1177, train acc 0.918, test acc 0.771, time 366.7 sec
注:由于本地CPU上训练时间过长,故只截取了运行的结果,后同。大家可以自行在网站上训练。

评价模型

def predict_sentiment(net, vocab, sentence):
    '''
    @params:
        net: 训练好的模型
        vocab: 在该数据集上创建的词典,用于将给定的单词序转换为单词下标的序列,从而输入模型
        sentence: 需要分析情感的文本,以单词序列的形式给出
    @return: 预测的结果,positive 为正面情绪文本,negative 为负面情绪文本
    '''
    device = list(net.parameters())[0].device # 读取模型所在的环境
    sentence = torch.tensor([vocab.stoi[word] for word in sentence], device=device)
    label = torch.argmax(net(sentence.view((1, -1))), dim=1)
    return 'positive' if label.item() == 1 else 'negative'

predict_sentiment(net, vocab, ['this', 'movie', 'is', 'so', 'great'])

out:

'positive'

predict_sentiment(net, vocab, ['this', 'movie', 'is', 'so', 'bad'])

out:

'positive'

使用卷积神经网络

一维卷积层

在介绍模型前我们先来解释一维卷积层的工作原理。与二维卷积层一样,一维卷积层使用一维的互相关运算。在一维互相关运算中,卷积窗口从输入数组的最左方开始,按从左往右的顺序,依次在输入数组上滑动。当卷积窗口滑动到某一位置时,窗口中的输入子数组与核数组按元素相乘并求和,得到输出数组中相应位置的元素。如图所示,输入是一个宽为 7 的一维数组,核数组的宽为 2。可以看到输出的宽度为 7−2+1=6,且第一个元素是由输入的最左边的宽为 2 的子数组与核数组按元素相乘后再相加得到的:0×1+1×2=2。


def corr1d(X, K):
    '''
    @params:
        X: 输入,形状为 (seq_len,) 的张量
        K: 卷积核,形状为 (w,) 的张量
    @return:
        Y: 输出,形状为 (seq_len - w + 1,) 的张量
    '''
    w = K.shape[0] # 卷积窗口宽度
    Y = torch.zeros((X.shape[0] - w + 1))
    for i in range(Y.shape[0]): # 滑动窗口
        Y[i] = (X[i: i + w] * K).sum()
    return Y

X, K = torch.tensor([0, 1, 2, 3, 4, 5, 6]), torch.tensor([1, 2])
print(corr1d(X, K))

tensor([ 2., 5., 8., 11., 14., 17.])
多输入通道的一维互相关运算也与多输入通道的二维互相关运算类似:在每个通道上,将核与相应的输入做一维互相关运算,并将通道之间的结果相加得到输出结果。下图展示了含 3 个输入通道的一维互相关运算,其中阴影部分为第一个输出元素及其计算所使用的输入和核数组元素:0×1+1×2+1×3+2×4+2×(−1)+3×(−3)=2。


def corr1d_multi_in(X, K):
    # 首先沿着X和K的通道维遍历并计算一维互相关结果。然后将所有结果堆叠起来沿第0维累加
    return torch.stack([corr1d(x, k) for x, k in zip(X, K)]).sum(dim=0)
    # [corr1d(X[i], K[i]) for i in range(X.shape[0])]

X = torch.tensor([[0, 1, 2, 3, 4, 5, 6],
              [1, 2, 3, 4, 5, 6, 7],
              [2, 3, 4, 5, 6, 7, 8]])
K = torch.tensor([[1, 2], [3, 4], [-1, -3]])
print(corr1d_multi_in(X, K))

tensor([ 2., 8., 14., 20., 26., 32.])
由二维互相关运算的定义可知,多输入通道的一维互相关运算可以看作单输入通道的二维互相关运算。如图所示,我们也可以将图中多输入通道的一维互相关运算以等价的单输入通道的二维互相关运算呈现。这里核的高等于输入的高。图中的阴影部分为第一个输出元素及其计算所使用的输入和核数组元素:2×(−1)+3×(−3)+1×3+2×4+0×1+1×2=2。


注:反之仅当二维卷积核的高度等于输入的高度时才成立。

之前的例子中输出都只有一个通道。我们在“多输入通道和多输出通道”一节中介绍了如何在二维卷积层中指定多个输出通道。类似地,我们也可以在一维卷积层指定多个输出通道,从而拓展卷积层中的模型参数。

时序最大池化层

类似地,我们有一维池化层。TextCNN 中使用的时序最大池化(max-over-time pooling)层实际上对应一维全局最大池化层:假设输入包含多个通道,各通道由不同时间步上的数值组成,各通道的输出即该通道所有时间步中最大的数值。因此,时序最大池化层的输入在各个通道上的时间步数可以不同。


注:自然语言中还有一些其他的池化操作,可参考这篇博文。

为提升计算性能,我们常常将不同长度的时序样本组成一个小批量,并通过在较短序列后附加特殊字符(如0)令批量中各时序样本长度相同。这些人为添加的特殊字符当然是无意义的。由于时序最大池化的主要目的是抓取时序中最重要的特征,它通常能使模型不受人为添加字符的影响。

class GlobalMaxPool1d(nn.Module):
    def __init__(self):
        super(GlobalMaxPool1d, self).__init__()
    def forward(self, x):
        '''
        @params:
            x: 输入,形状为 (batch_size, n_channels, seq_len) 的张量
        @return: 时序最大池化后的结果,形状为 (batch_size, n_channels, 1) 的张量
        '''
        return F.max_pool1d(x, kernel_size=x.shape[2]) # kenerl_size=seq_len

TextCNN 模型

TextCNN 模型主要使用了一维卷积层和时序最大池化层。假设输入的文本序列由 个词组成,每个词用 维的词向量表示。那么输入样本的宽为 ,输入通道数为 。TextCNN 的计算主要分为以下几步。

定义多个一维卷积核,并使用这些卷积核对输入分别做卷积计算。宽度不同的卷积核可能会捕捉到不同个数的相邻词的相关性。
对输出的所有通道分别做时序最大池化,再将这些通道的池化输出值连结为向量。
通过全连接层将连结后的向量变换为有关各类别的输出。这一步可以使用丢弃层应对过拟合。
下图用一个例子解释了 TextCNN 的设计。这里的输入是一个有 11 个词的句子,每个词用 6 维词向量表示。因此输入序列的宽为 11,输入通道数为 6。给定 2 个一维卷积核,核宽分别为 2 和 4,输出通道数分别设为 4 和 5。因此,一维卷积计算后,4 个输出通道的宽为 11−2+1=10,而其他 5 个通道的宽为 11−4+1=8。尽管每个通道的宽不同,我们依然可以对各个通道做时序最大池化,并将 9 个通道的池化输出连结成一个 9 维向量。最终,使用全连接将 9 维向量变换为 2 维输出,即正面情感和负面情感的预测。



下面我们来实现 TextCNN 模型。与上一节相比,除了用一维卷积层替换循环神经网络外,这里我们还使用了两个嵌入层,一个的权重固定,另一个则参与训练。

class TextCNN(nn.Module):
    def __init__(self, vocab, embed_size, kernel_sizes, num_channels):
        '''
        @params:
            vocab: 在数据集上创建的词典,用于获取词典大小
            embed_size: 嵌入维度大小
            kernel_sizes: 卷积核大小列表
            num_channels: 卷积通道数列表
        '''
        super(TextCNN, self).__init__()
        self.embedding = nn.Embedding(len(vocab), embed_size) # 参与训练的嵌入层
        self.constant_embedding = nn.Embedding(len(vocab), embed_size) # 不参与训练的嵌入层
        
        self.pool = GlobalMaxPool1d() # 时序最大池化层没有权重,所以可以共用一个实例
        self.convs = nn.ModuleList()  # 创建多个一维卷积层
        for c, k in zip(num_channels, kernel_sizes):
            self.convs.append(nn.Conv1d(in_channels = 2*embed_size, 
                                        out_channels = c, 
                                        kernel_size = k))
            
        self.decoder = nn.Linear(sum(num_channels), 2)
        self.dropout = nn.Dropout(0.5) # 丢弃层用于防止过拟合

def forward(self, inputs):
        '''
        @params:
            inputs: 词语下标序列,形状为 (batch_size, seq_len) 的整数张量
        @return:
            outputs: 对文本情感的预测,形状为 (batch_size, 2) 的张量
        '''
        embeddings = torch.cat((
            self.embedding(inputs), 
            self.constant_embedding(inputs)), dim=2) # (batch_size, seq_len, 2*embed_size)
        # 根据一维卷积层要求的输入格式,需要将张量进行转置
        embeddings = embeddings.permute(0, 2, 1) # (batch_size, 2*embed_size, seq_len)
        
        encoding = torch.cat([
            self.pool(F.relu(conv(embeddings))).squeeze(-1) for conv in self.convs], dim=1)
        # encoding = []
        # for conv in self.convs:
        #     out = conv(embeddings) # (batch_size, out_channels, seq_len-kernel_size+1)
        #     out = self.pool(F.relu(out)) # (batch_size, out_channels, 1)
        #     encoding.append(out.squeeze(-1)) # (batch_size, out_channels)
        # encoding = torch.cat(encoding) # (batch_size, out_channels_sum)
        
        # 应用丢弃法后使用全连接层得到输出
        outputs = self.decoder(self.dropout(encoding))
        return outputs

embed_size, kernel_sizes, nums_channels = 100, [3, 4, 5], [100, 100, 100]
net = TextCNN(vocab, embed_size, kernel_sizes, nums_channels)

训练并评价模型

lr, num_epochs = 0.001, 5
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, net.parameters()), lr=lr)
loss = nn.CrossEntropyLoss()
train(train_iter, test_iter, net, loss, optimizer, device, num_epochs)

training on cpu
epoch 1, loss 0.2317, train acc 0.956, test acc 0.782, time 374.0 sec
epoch 2, loss 0.0527, train acc 0.973, test acc 0.780, time 372.5 sec
epoch 3, loss 0.0211, train acc 0.981, test acc 0.783, time 375.3 sec
epoch 4, loss 0.0119, train acc 0.985, test acc 0.788, time 370.7 sec
epoch 5, loss 0.0078, train acc 0.989, test acc 0.791, time 370.8 sec

training on cuda
epoch 1, loss 0.6314, train acc 0.666, test acc 0.803, time 15.9 sec
epoch 2, loss 0.2416, train acc 0.766, test acc 0.807, time 15.9 sec
epoch 3, loss 0.1330, train acc 0.821, test acc 0.849, time 15.9 sec
epoch 4, loss 0.0825, train acc 0.858, test acc 0.860, time 16.0 sec
epoch 5, loss 0.0494, train acc 0.898, test acc 0.865, time 15.9 sec

predict_sentiment(net, vocab, ['this', 'movie', 'is', 'so', 'great'])

'positive'

predict_sentiment(net, vocab, ['this', 'movie', 'is', 'so', 'bad'])

'negative'

数据增强

图像增广

在5.6节(深度卷积神经网络)里我们提到过,大规模数据集是成功应用深度神经网络的前提。图像增广(image augmentation)技术通过对训练图像做一系列随机改变,来产生相似但又不同的训练样本,从而扩大训练数据集的规模。图像增广的另一种解释是,随机改变训练样本可以降低模型对某些属性的依赖,从而提高模型的泛化能力。例如,我们可以对图像进行不同方式的裁剪,使感兴趣的物体出现在不同位置,从而减轻模型对物体出现位置的依赖性。我们也可以调整亮度、色彩等因素来降低模型对色彩的敏感度。可以说,在当年AlexNet的成功中,图像增广技术功不可没。本节我们将讨论这个在计算机视觉里被广泛使用的技术。

首先,导入实验所需的包或模块。

import os
os.listdir("/home/kesci/input/img2083/")

out:

['img']

%matplotlib inline
import os
import time
import torch
from torch import nn, optim
from torch.utils.data import Dataset, DataLoader
import torchvision
import sys
from PIL import Image

sys.path.append("/home/kesci/input/")
#置当前使用的GPU设备仅为0号设备
os.environ["CUDA_VISIBLE_DEVICES"] = "0"   

import d2lzh1981 as d2l

# 定义device,是否使用GPU,依据计算机配置自动会选择
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(torch.__version__)
print(device)

1.3.0
cpu

常用的图像增广方法

我们来读取一张形状为(高和宽分别为400像素和500像素)的图像作为实验的样例。

d2l.set_figsize()
img = Image.open('/home/kesci/input/img2083/img/cat1.jpg')
d2l.plt.imshow(img)

out:



下面定义绘图函数show_images。

# 本函数已保存在d2lzh_pytorch包中方便以后使用
def show_images(imgs, num_rows, num_cols, scale=2):
    figsize = (num_cols * scale, num_rows * scale)
    _, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)
    for i in range(num_rows):
        for j in range(num_cols):
            axes[i][j].imshow(imgs[i * num_cols + j])
            axes[i][j].axes.get_xaxis().set_visible(False)
            axes[i][j].axes.get_yaxis().set_visible(False)
    return axes

大部分图像增广方法都有一定的随机性。为了方便观察图像增广的效果,接下来我们定义一个辅助函数apply。这个函数对输入图像img多次运行图像增广方法aug并展示所有的结果。

def apply(img, aug, num_rows=2, num_cols=4, scale=1.5):
    Y = [aug(img) for _ in range(num_rows * num_cols)]
    show_images(Y, num_rows, num_cols, scale)

翻转和裁剪

左右翻转图像通常不改变物体的类别。它是最早也是最广泛使用的一种图像增广方法。下面我们通过torchvision.transforms模块创建RandomHorizontalFlip实例来实现一半概率的图像水平(左右)翻转。

apply(img, torchvision.transforms.RandomHorizontalFlip())

上下翻转不如左右翻转通用。但是至少对于样例图像,上下翻转不会造成识别障碍。下面我们创建RandomVerticalFlip实例来实现一半概率的图像垂直(上下)翻转。

apply(img, torchvision.transforms.RandomVerticalFlip())

在我们使用的样例图像里,猫在图像正中间,但一般情况下可能不是这样。在5.4节(池化层)里我们解释了池化层能降低卷积层对目标位置的敏感度。除此之外,我们还可以通过对图像随机裁剪来让物体以不同的比例出现在图像的不同位置,这同样能够降低模型对目标位置的敏感性。

在下面的代码里,我们每次随机裁剪出一块面积为原面积10%100%的区域,且该区域的宽和高之比随机取自0.52,然后再将该区域的宽和高分别缩放到200像素。若无特殊说明,本节a中b和之间的随机数指的是从区间[a,b]中随机均匀采样所得到的连续值。

shape_aug = torchvision.transforms.RandomResizedCrop(200, scale=(0.1, 1), ratio=(0.5, 2))
apply(img, shape_aug)

变化颜色

apply(img, torchvision.transforms.ColorJitter(brightness=0.5, contrast=0, saturation=0, hue=0))


我们也可以随机变化图像的色调。

apply(img, torchvision.transforms.ColorJitter(brightness=0, contrast=0, saturation=0, hue=0.5))

类似地,我们也可以随机变化图像的对比度。

apply(img, torchvision.transforms.ColorJitter(brightness=0, contrast=0.5, saturation=0, hue=0))

我们也可以同时设置如何随机变化图像的亮度(brightness)、对比度(contrast)、饱和度(saturation)和色调(hue)。

color_aug = torchvision.transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.5)
apply(img, color_aug)

叠加多个图像增广方法

实际应用中我们会将多个图像增广方法叠加使用。我们可以通过Compose实例将上面定义的多个图像增广方法叠加起来,再应用到每张图像之上。

augs = torchvision.transforms.Compose([
    torchvision.transforms.RandomHorizontalFlip(), color_aug, shape_aug])
apply(img, augs)

使用图像增广训练模型

下面我们来看一个将图像增广应用在实际训练中的例子。这里我们使用CIFAR-10数据集,而不是之前我们一直使用的Fashion-MNIST数据集。这是因为Fashion-MNIST数据集中物体的位置和尺寸都已经经过归一化处理,而CIFAR-10数据集中物体的颜色和大小区别更加显著。下面展示了CIFAR-10数据集中前32张训练图像。

CIFAR_ROOT_PATH = '/home/kesci/input/cifar102021'
all_imges = torchvision.datasets.CIFAR10(train=True, root=CIFAR_ROOT_PATH, download = True)
# all_imges的每一个元素都是(image, label)
show_images([all_imges[i][0] for i in range(32)], 4, 8, scale=0.8);

Files already downloaded and verified



为了在预测时得到确定的结果,我们通常只将图像增广应用在训练样本上,而不在预测时使用含随机操作的图像增广。在这里我们只使用最简单的随机左右翻转。此外,我们使用ToTensor将小批量图像转成PyTorch需要的格式,即形状为(批量大小, 通道数, 高, 宽)、值域在0到1之间且类型为32位浮点数。

flip_aug = torchvision.transforms.Compose([
     torchvision.transforms.RandomHorizontalFlip(),
     torchvision.transforms.ToTensor()])

no_aug = torchvision.transforms.Compose([
     torchvision.transforms.ToTensor()])

接下来我们定义一个辅助函数来方便读取图像并应用图像增广。有关DataLoader的详细介绍,可参考更早的3.5节图像分类数据集(Fashion-MNIST)。

num_workers = 0 if sys.platform.startswith('win32') else 4
def load_cifar10(is_train, augs, batch_size, root=CIFAR_ROOT_PATH):
    dataset = torchvision.datasets.CIFAR10(root=root, train=is_train, transform=augs, download=False)
    return DataLoader(dataset, batch_size=batch_size, shuffle=is_train, num_workers=num_workers)

使用图像增广训练模型

我们在CIFAR-10数据集上训练5.11节(残差网络)中介绍的ResNet-18模型。

我们先定义train函数使用GPU训练并评价模型。

# 本函数已保存在d2lzh_pytorch包中方便以后使用
def train(train_iter, test_iter, net, loss, optimizer, device, num_epochs):
    net = net.to(device)
    print("training on ", device)
    batch_count = 0
    for epoch in range(num_epochs):
        train_l_sum, train_acc_sum, n, start = 0.0, 0.0, 0, time.time()
        for X, y in train_iter:
            X = X.to(device)
            y = y.to(device)
            y_hat = net(X)
            l = loss(y_hat, y)
            optimizer.zero_grad()
            l.backward()
            optimizer.step()
            train_l_sum += l.cpu().item()
            train_acc_sum += (y_hat.argmax(dim=1) == y).sum().cpu().item()
            n += y.shape[0]
            batch_count += 1
        test_acc = d2l.evaluate_accuracy(test_iter, net)
        print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f, time %.1f sec'
              % (epoch + 1, train_l_sum / batch_count, train_acc_sum / n, test_acc, time.time() - start))

然后就可以定义train_with_data_aug函数使用图像增广来训练模型了。该函数使用Adam算法作为训练使用的优化算法,然后将图像增广应用于训练数据集之上,最后调用刚才定义的train函数训练并评价模型。
%% Below, type any markdown to display in the Graffiti tip. %% Then run this cell to save it. train_iter = load_cifar10(True, train_augs, batch_size) test_iter = load_cifar10(False, test_augs, batch_size)

def train_with_data_aug(train_augs, test_augs, lr=0.001):
    batch_size, net = 256, d2l.resnet18(10)
    optimizer = torch.optim.Adam(net.parameters(), lr=lr)
    loss = torch.nn.CrossEntropyLoss()
    train_iter = load_cifar10(True, train_augs, batch_size)
    test_iter = load_cifar10(False, test_augs, batch_size)
    train(train_iter, test_iter, net, loss, optimizer, device, num_epochs=10)

下面使用随机左右翻转的图像增广来训练模型。

train_with_data_aug(flip_aug, no_aug)

training on cpu
epoch 1, loss 1.3790, train acc 0.504, test acc 0.554, time 195.8 sec
epoch 2, loss 0.4992, train acc 0.646, test acc 0.592, time 192.5 sec
epoch 3, loss 0.2821, train acc 0.702, test acc 0.657, time 193.7 sec
epoch 4, loss 0.1859, train acc 0.739, test acc 0.693, time 195.4 sec
epoch 5, loss 0.1349, train acc 0.766, test acc 0.688, time 192.6 sec
epoch 6, loss 0.1022, train acc 0.786, test acc 0.701, time 200.2 sec
epoch 7, loss 0.0797, train acc 0.806, test acc 0.720, time 191.8 sec
epoch 8, loss 0.0633, train acc 0.825, test acc 0.695, time 198.6 sec
epoch 9, loss 0.0524, train acc 0.836, test acc 0.693, time 192.1 sec
epoch 10, loss 0.0437, train acc 0.850, test acc 0.769, time 196.3 sec

模型微调

微调

在前面的一些章节中,我们介绍了如何在只有6万张图像的Fashion-MNIST训练数据集上训练模型。我们还描述了学术界当下使用最广泛的大规模图像数据集ImageNet,它有超过1,000万的图像和1,000类的物体。然而,我们平常接触到数据集的规模通常在这两者之间。

假设我们想从图像中识别出不同种类的椅子,然后将购买链接推荐给用户。一种可能的方法是先找出100种常见的椅子,为每种椅子拍摄1,000张不同角度的图像,然后在收集到的图像数据集上训练一个分类模型。这个椅子数据集虽然可能比Fashion-MNIST数据集要庞大,但样本数仍然不及ImageNet数据集中样本数的十分之一。这可能会导致适用于ImageNet数据集的复杂模型在这个椅子数据集上过拟合。同时,因为数据量有限,最终训练得到的模型的精度也可能达不到实用的要求。

为了应对上述问题,一个显而易见的解决办法是收集更多的数据。然而,收集和标注数据会花费大量的时间和资金。例如,为了收集ImageNet数据集,研究人员花费了数百万美元的研究经费。虽然目前的数据采集成本已降低了不少,但其成本仍然不可忽略。

另外一种解决办法是应用迁移学习(transfer learning),将从源数据集学到的知识迁移到目标数据集上。例如,虽然ImageNet数据集的图像大多跟椅子无关,但在该数据集上训练的模型可以抽取较通用的图像特征,从而能够帮助识别边缘、纹理、形状和物体组成等。这些类似的特征对于识别椅子也可能同样有效。

本节我们介绍迁移学习中的一种常用技术:微调(fine tuning)。如图9.1所示,微调由以下4步构成。

  • 在源数据集(如ImageNet数据集)上预训练一个神经网络模型,即源模型。
  • 创建一个新的神经网络模型,即目标模型。它复制了源模型上除了输出层外的所有模型设计及其参数。我们假设这些模型参数包含了源数据集上学习到的知识,且这些知识同样适用于目标数据集。我们还假设源模型的输出层跟源数据集的标签紧密相关,因此在目标模型中不予采用。
  • 为目标模型添加一个输出大小为目标数据集类别个数的输出层,并随机初始化该层的模型参数。
  • 在目标数据集(如椅子数据集)上训练目标模型。我们将从头训练输出层,而其余层的参数都是基于源模型的参数微调得到的。



    当目标数据集远小于源数据集时,微调有助于提升模型的泛化能力。

热狗识别

接下来我们来实践一个具体的例子:热狗识别。我们将基于一个小数据集对在ImageNet数据集上训练好的ResNet模型进行微调。该小数据集含有数千张包含热狗和不包含热狗的图像。我们将使用微调得到的模型来识别一张图像中是否包含热狗。

首先,导入实验所需的包或模块。torchvision的models包提供了常用的预训练模型。如果希望获取更多的预训练模型,可以使用使用pretrained-models.pytorch仓库。

%matplotlib inline
import torch
from torch import nn, optim
from torch.utils.data import Dataset, DataLoader
import torchvision
from torchvision.datasets import ImageFolder
from torchvision import transforms
from torchvision import models
import os

import sys

sys.path.append("/home/kesci/input/")
import d2lzh1981 as d2l

os.environ["CUDA_VISIBLE_DEVICES"] = "0"
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

获取数据集

我们使用的热狗数据集(点击下载)是从网上抓取的,它含有1400张包含热狗的正类图像,和同样多包含其他食品的负类图像。各类的1000张图像被用于训练,其余则用于测试。

我们首先将压缩后的数据集下载到路径data_dir之下,然后在该路径将下载好的数据集解压,得到两个文件夹hotdog/trainhotdog/test。这两个文件夹下面均有hotdognot-hotdog两个类别文件夹,每个类别文件夹里面是图像文件。

import os
os.listdir('/home/kesci/input/resnet185352')

out

['resnet18-5c106cde.pth']

data_dir = '/home/kesci/input/hotdog4014'
os.listdir(os.path.join(data_dir, "hotdog"))

out

['test', 'train']
我们创建两个ImageFolder实例来分别读取训练数据集和测试数据集中的所有图像文件。

train_imgs = ImageFolder(os.path.join(data_dir, 'hotdog/train'))
test_imgs = ImageFolder(os.path.join(data_dir, 'hotdog/test'))

下面画出前8张正类图像和最后8张负类图像。可以看到,它们的大小和高宽比各不相同。

hotdogs = [train_imgs[i][0] for i in range(8)]
not_hotdogs = [train_imgs[-i - 1][0] for i in range(8)]
d2l.show_images(hotdogs + not_hotdogs, 2, 8, scale=1.4);

在训练时,我们先从图像中裁剪出随机大小和随机高宽比的一块随机区域,然后将该区域缩放为高和宽均为224像素的输入。测试时,我们将图像的高和宽均缩放为256像素,然后从中裁剪出高和宽均为224像素的中心区域作为输入。此外,我们对RGB(红、绿、蓝)三个颜色通道的数值做标准化:每个数值减去该通道所有数值的平均值,再除以该通道所有数值的标准差作为输出。
注: 在使用预训练模型时,一定要和预训练时作同样的预处理。 如果你使用的是torchvision的models,那就要求: All pre-trained models expect input images normalized in the same way, i.e. mini-batches of 3-channel RGB images of shape (3 x H x W), where H and W are expected to be at least 224. The images have to be loaded in to a range of [0, 1] and then normalized using mean = [0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225].

normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
train_augs = transforms.Compose([
        transforms.RandomResizedCrop(size=224),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        normalize
    ])

test_augs = transforms.Compose([
        transforms.Resize(size=256),
        transforms.CenterCrop(size=224),
        transforms.ToTensor(),
        normalize
    ])

定义和初始化模型

我们使用在ImageNet数据集上预训练的ResNet-18作为源模型。这里指定pretrained=True来自动下载并加载预训练的模型参数。在第一次使用时需要联网下载模型参数。

pretrained_net = models.resnet18(pretrained=False)
pretrained_net.load_state_dict(torch.load('/home/kesci/input/resnet185352/resnet18-5c106cde.pth'))

out


下面打印源模型的成员变量fc。作为一个全连接层,它将ResNet最终的全局平均池化层输出变换成ImageNet数据集上1000类的输出。

print(pretrained_net.fc)

Linear(in_features=512, out_features=1000, bias=True)
可见此时pretrained_net最后的输出个数等于目标数据集的类别数1000。所以我们应该将最后的fc成修改我们需要的输出类别数:

pretrained_net.fc = nn.Linear(512, 2)
print(pretrained_net.fc)

Linear(in_features=512, out_features=2, bias=True)
此时,pretrained_net的fc层就被随机初始化了,但是其他层依然保存着预训练得到的参数。由于是在很大的ImageNet数据集上预训练的,所以参数已经足够好,因此一般只需使用较小的学习率来微调这些参数,而fc中的随机初始化参数一般需要更大的学习率从头训练。PyTorch可以方便的对模型的不同部分设置不同的学习参数,我们在下面代码中将fc的学习率设为已经预训练过的部分的10倍。

output_params = list(map(id, pretrained_net.fc.parameters()))
feature_params = filter(lambda p: id(p) not in output_params, pretrained_net.parameters())

lr = 0.01
optimizer = optim.SGD([{'params': feature_params},
                       {'params': pretrained_net.fc.parameters(), 'lr': lr * 10}],
                       lr=lr, weight_decay=0.001)

微调模型

def train_fine_tuning(net, optimizer, batch_size=128, num_epochs=5):
    train_iter = DataLoader(ImageFolder(os.path.join(data_dir, 'hotdog/train'), transform=train_augs),
                            batch_size, shuffle=True)
    test_iter = DataLoader(ImageFolder(os.path.join(data_dir, 'hotdog/test'), transform=test_augs),
                           batch_size)
    loss = torch.nn.CrossEntropyLoss()
    d2l.train(train_iter, test_iter, net, loss, optimizer, device, num_epochs)
train_fine_tuning(pretrained_net, optimizer)

training on cpu
epoch 1, loss 3.4516, train acc 0.687, test acc 0.884, time 298.2 sec
epoch 2, loss 0.1550, train acc 0.924, test acc 0.895, time 296.2 sec
epoch 3, loss 0.1028, train acc 0.903, test acc 0.950, time 295.0 sec
epoch 4, loss 0.0495, train acc 0.931, test acc 0.897, time 294.0 sec
epoch 5, loss 0.1454, train acc 0.878, test acc 0.939, time 291.0 sec
作为对比,我们定义一个相同的模型,但将它的所有模型参数都初始化为随机值。由于整个模型都需要从头训练,我们可以使用较大的学习率。

scratch_net = models.resnet18(pretrained=False, num_classes=2)
lr = 0.1
optimizer = optim.SGD(scratch_net.parameters(), lr=lr, weight_decay=0.001)
train_fine_tuning(scratch_net, optimizer)

training on cpu
epoch 1, loss 2.6391, train acc 0.598, test acc 0.734, time 292.4 sec
epoch 2, loss 0.2703, train acc 0.790, test acc 0.632, time 289.7 sec
epoch 3, loss 0.1584, train acc 0.810, test acc 0.825, time 290.2 sec
epoch 4, loss 0.1177, train acc 0.805, test acc 0.787, time 288.6 sec
epoch 5, loss 0.0782, train acc 0.829, test acc 0.828, time 289.8 sec

输出:

raining on cuda
epoch 1, loss 2.6686, train acc 0.582, test acc 0.556, time 25.3 sec
epoch 2, loss 0.2434, train acc 0.797, test acc 0.776, time 25.3 sec
epoch 3, loss 0.1251, train acc 0.845, test acc 0.802, time 24.9 sec
epoch 4, loss 0.0958, train acc 0.833, test acc 0.810, time 25.0 sec
epoch 5, loss 0.0757, train acc 0.836, test acc 0.780, time 24.9 sec

你可能感兴趣的:(文本分类;数据增强;模型微调 2020-02-25)