机器学习算法详解3:逻辑回归

机器学习算法详解3:逻辑回归

前言

​ 本系列主要对机器学习上算法的原理进行解读,给大家分享一下我的观点和总结。

本篇前言

​ 本篇对逻辑回归的算法原理进行解读。

目录结构

文章目录

    • 机器学习算法详解3:逻辑回归
      • 1. 引子
      • 2. sigmoid函数
      • 3. 原理推导
      • 4. 交叉熵损失函数推导
        • 4.1 信息熵
        • 4.2 KL散度
        • 4.3 交叉熵推导
        • 4.4 交叉熵损失函数推导
      • 5. 为什么选用sigmoid函数?
      • 6. 总结

1. 引子

​ 在上一篇提及一个概念广义线性回归,而逻辑回归也是与之相关。

​ 假设我们有一个曲线,如下:

机器学习算法详解3:逻辑回归_第1张图片

​ 假设它的表达式为y=wx,其中y的值是符合lnx的分布的。那么,可以进行线性映射lny = wx ,变为y=e^(wx)即真正的表达式y=e^(wx)可以变为最初的广义线性形式y=wx(只是此处的y符合lnx分布而已)

​ 换而言之,我们可以将e^(wx)看作是一个普通的ax,那么逻辑回归就是将这个普通的ax作为某个函数的输入,让函数的输出在[0,1]之间,相当于输出的是概率值,就成了。

2. sigmoid函数

​ 上面提及某函数,那么选择什么样的函数呢?

​ 首先,函数必须满足的要求是:输出值在[0,1]之间。满足这个要求的函数非常多,比如符号函数:

机器学习算法详解3:逻辑回归_第2张图片

​ 但是,这个函数有一个重要缺点:不是连续可导的(在x=0这个点)。这样会导致我们在优化损失函数的时候,无法直接求导,需要分情况进行求导。其次,这个函数有个小缺点:太僵硬了,只能取1、0这两个值

​ 针对上述情况,我们提出这个函数要满足的新要求:连续可导,最好是光滑曲线

​ 那么,前人们找到一个函数,名为 sigmoid函数,公式如下:

在这里插入图片描述

​ 函数图像如下:

机器学习算法详解3:逻辑回归_第3张图片

​ 并且,值得注意的一点是,sigmoid函数的导数非常特殊,其倒数公式如下:
机器学习算法详解3:逻辑回归_第4张图片

3. 原理推导

​ 基本的导数求法,非常的简单。

机器学习算法详解3:逻辑回归_第5张图片

4. 交叉熵损失函数推导

4.1 信息熵

​ 要对交叉熵进行推导,首先需要明白什么是信息熵。(本来应该在决策树那里讲的)

​ 熵,大家应该都明白,就是描述一个系统的混乱程度。那么信息熵,就相当于描述一个信息的有用程度。

​ 公式如下:

在这里插入图片描述

4.2 KL散度

​ 有时候也称之为KL距离,但是其实并不是真正的距离,因为不符合距离的对称性质。

其衡量两个分布P、Q的相似程度,公式如下:

机器学习算法详解3:逻辑回归_第6张图片

​ 举个计算的例子:

机器学习算法详解3:逻辑回归_第7张图片

4.3 交叉熵推导

机器学习算法详解3:逻辑回归_第8张图片

4.4 交叉熵损失函数推导

​ 该损失函数的推导可以从三个角度入手,分别是sigmoid入手、极大似然估计入手和KL散度入手。这里我接受最后一种推导。

​ 逻辑回归损失函数即衡量真实分布和预测分布的相似性——即KL散度,那么推导过程和上面相似,只是把P and Q换为了y and y^,通过上面可以知道最后的KL散度与交叉熵的值正相关,因此我们可以通过交叉熵构建出损失函数来代替KL散度以衡量真实分布和预测分布的相似程度,即公式:(下面分为两个部分是因为一个为正样本、一个为负样本而已)

机器学习算法详解3:逻辑回归_第9张图片

5. 为什么选用sigmoid函数?

​ 这个问题也可以这么问:sigmoid函数怎么推出来的?这个是我偶然看视频发现的,我个人觉得有一定的道理,所以在这里分享一下:

​ 对于真实大数据场景,数据的每个特征基本都符合正太分布,并且一般标准差相同而均值不同(感觉上是对的,但是没有证明),那么如下图推导过程:

机器学习算法详解3:逻辑回归_第10张图片

6. 总结

​ 本篇讲解了逻辑回归的原理,逻辑回归主要应用于二分类任务,也是分类任务中常用的一个算法。

​ 下一篇,讲解支持向量机算法。

你可能感兴趣的:(机器学习算法个人理解,机器学习,算法,逻辑回归)