分类预测 | Matlab实现GRNN-Adaboost多特征分类预测

分类预测 | Matlab实现GRNN-Adaboost多特征分类预测

目录

    • 分类预测 | Matlab实现GRNN-Adaboost多特征分类预测
      • 效果一览
      • 基本介绍
      • 研究内容
      • 程序设计
      • 参考资料

效果一览

分类预测 | Matlab实现GRNN-Adaboost多特征分类预测_第1张图片
分类预测 | Matlab实现GRNN-Adaboost多特征分类预测_第2张图片

分类预测 | Matlab实现GRNN-Adaboost多特征分类预测_第3张图片

分类预测 | Matlab实现GRNN-Adaboost多特征分类预测_第4张图片

基本介绍

1.Matlab实现GRNN-Adaboost多特征分类预测(Matlab完整程序和数据)
2.多特征输入模型,直接替换数据就可以用。
3.语言为matlab。分类效果图,混淆矩阵图。
4.分类效果图,混淆矩阵图。
5.BP-Adaboost的数据分类预测。
运行环境matlab2018及以上。

研究内容

GRNN-Adaboost是一种将GRNN和AdaBoost两种机器学习技术结合起来使用的方法,旨在提高模型的性能和鲁棒性。具体而言,AdaBoost则是一种集成学习方法,它将多个弱分类器组合起来形成一个强分类器,其中每个分类器都是针对不同数据集和特征表示训练的。GRNN-AdaBoost算法的基本思想是将GRNN作为基模型,利用AdaBoost算法对其进行增强。具体而言,我们可以训练多个GRNN模型,每个模型使用不同的数据集和特征表示,然后将它们的预测结果组合起来,形成一个更准确和鲁棒的模型。

程序设计

  • 完整程序和数据下载方式私信博主回复Matlab实现基于GRNN-Adaboost数据分类预测
%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input );
t_train = T_train;
t_test  = T_test ;

%%  输出编码
t_train = ind2vec(t_train);
t_test  = ind2vec(t_test );



%%  数据反归一化
T_sim1 = vec2ind(t_sim1);
T_sim2 = vec2ind(t_sim2);

%%  性能评价
error1 = sum((T_sim1 == T_train)) / M * 100 ;
error2 = sum((T_sim2 == T_test )) / N * 100 ;

%%  绘图
figure
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['准确率=' num2str(error1) '%']};
title(string)
grid

figure
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['准确率=' num2str(error2) '%']};
title(string)
grid

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502

你可能感兴趣的:(分类预测,GRNN-Adaboost,GRNN,Adaboost,多特征分类预测)