我们都知道搜索树的效率最高的时候就是搜索树最满(满二叉树)的时候。但是现实中的搜索树可能是这个样子。如下图:
那这样的搜索树跟一个查找的效率跟一维数组没什么区别。为了避免出现这样的情况,所以引入了AVL树。
发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。
为了方便代码的编写,在树的结点中要有平衡因子、左节点、右节点、父亲结点等
template<class K,class V>
struct TreeNode
{
TreeNode<K, V>* _left;
TreeNode<K, V>* _right;
TreeNode<K, V>* _parent;
pair<K, V> _p;
int _bf;
TreeNode(const pair<K, V>& p)
:_left(nullptr)
, _right(nullptr)
, _parent(nullptr)
, _p(p)
, _bf(0)
{}
};
template<class K,class V>
class AVLTree
{
typedef TreeNode<K, V> Node;
public:
AVLTree()
:_root(nullptr)
{}
private:
Node* _root;
};
#pragma once
#include
using namespace std;
#include
template<class K,class V>
struct TreeNode
{
TreeNode<K, V>* _left;
TreeNode<K, V>* _right;
TreeNode<K, V>* _parent;
pair<K, V> _p;
int _bf;
TreeNode(const pair<K, V>& p)
:_left(nullptr)
, _right(nullptr)
, _parent(nullptr)
, _p(p)
, _bf(0)
{}
};
template<class K,class V>
class AVLTree
{
typedef TreeNode<K, V> Node;
public:
AVLTree()
:_root(nullptr)
{}
bool insert(const pair<K, V>& p)
{
if (_root == nullptr)
{
_root = new Node(p);
return true;
}
Node* cur = _root;
Node* parent = _root;
while (cur)
{
if (cur->_p.first > p.first)
{
parent = cur;
cur = cur->_left;
}
else if (cur->_p.first < p.first)
{
parent = cur;
cur = cur->_right;
}
else
{
return false;
}
}
cur = new Node(p);
if (parent->_p.first > p.first)
{
parent->_left = cur;
}
else
{
parent->_right = cur;
}
cur->_parent = parent;
while (parent)
{
if (cur == parent->_left)
{
parent->_bf--;
}
else
{
parent->_bf++;
}
if (parent->_bf == 0)
{
break;
}
else if (parent->_bf == 1 || parent->_bf == -1)
{
cur = parent;
parent = cur->_parent;
}
else if (parent->_bf == 2 || parent->_bf == -2)
{
//旋转
//斜线且右边高 左旋
if (parent->_bf == 2 && cur->_bf == 1)
{
RotateL(parent);
}
//斜线且左边高 右旋
else if(parent->_bf == -2 && cur->_bf == -1)
{
RotateR(parent);
}
else if (parent->_bf == 2 && cur->_bf == -1)
{
RotateRL(parent);
}
else if (parent->_bf == -2 && cur->_bf == 1)
{
RotateLR(parent);
}
else
{
assert(false);
}
break;
}
else
{
assert(false);
}
}
return true;
}
int Height(Node* root)
{
if (root == nullptr)
{
return 0;
}
int leftheight = Height(root->_left);
int rightheight = Height(root->_right);
return leftheight > rightheight ? leftheight + 1 : rightheight + 1;
}
bool isBalance(Node* root)
{
if (root == nullptr)
{
return true;
}
int leftHeight = Height(root->_left);
int rightHeight = Height(root->_right);
if (rightHeight - leftHeight != root->_bf)
{
return false;
}
if (abs(leftHeight - rightHeight) > 2)
{
return false;
}
return isBalance(root->_left) && isBalance(root->_right);
}
bool isBalance()
{
return isBalance(_root);
}
private:
Node* _root;
void RotateL(Node* parent)
{
Node* cur = parent->_right;
Node* curleft = cur->_left;
Node* ppnode = parent->_parent;
parent->_right = curleft;
if (curleft)
{
curleft->_parent = parent;
}
cur->_left = parent;
parent->_parent = cur;
if (parent == _root)
{
_root = cur;
}
else
{
if (ppnode->_left == parent)
{
ppnode->_left = cur;
}
else
{
ppnode->_right = cur;
}
}
cur->_parent = ppnode;
parent->_bf = cur->_bf = 0;
}
void RotateR(Node* parent)
{
Node* cur = parent->_left;
Node* curRight = cur->_right;
Node* ppnode = parent->_parent;
cur->_right = parent;
parent->_left = curRight;
if (curRight)
{
curRight->_parent = parent;
}
parent->_parent = cur;
if (parent == nullptr)
{
_root = cur;
}
else
{
if (ppnode->_left == parent)
{
ppnode->_left = cur;
}
else
{
ppnode->_right = cur;
}
cur->_parent = ppnode;
}
parent->_bf = cur->_bf = 0;
}
void RotateRL(Node* parent)
{
Node* cur = parent->_right;
Node* curLeft = cur->_left;
int bf = curLeft->_bf;
RotateR(parent->_right);
RotateL(parent);
if (bf == 0)
{
parent->_bf = 0;
cur->_bf = 0;
curLeft->_bf = 0;
}
else if (bf == 1)
{
parent->_bf = -1;
cur->_bf = 0;
curLeft->_bf = 0;
}
else if (bf == -1)
{
cur->_bf = 1;
parent->_bf = 0;
curLeft->_bf = 0;
}
else
{
assert(false);
}
}
void RotateLR(Node* parent)
{
Node* cur = parent->_left;
Node* curRight = cur->_right;
int bf = curRight->_bf;
RotateL(parent->_left);
RotateR(parent);
if (bf == 0)
{
parent->_bf = 0;
cur->_bf = 0;
curRight->_bf = 0;
}
else if (bf == 1)
{
parent->_bf = 0;
cur->_bf = -1;
curRight = 0;
}
else if (bf == -1)
{
parent->_bf = 1;
cur->_bf = 0;
curRight = 0;
}
else
{
assert(false);
}
}
};
#include"RBTree.h"
#include"AVLTree.h"
#include
int main()
{
//int arr[] = { 4,2,6,1,3,5,15,7,16,14 };
//RBTree rb;
//for (auto e : arr)
//{
// rb.insert(make_pair(e,e));
// cout << "insert:" << e << "->" << rb.isBalance() << endl;
//}
int arr[] = { 4,2,6,1,3,5,15,7,16,14 };
AVLTree<int, int> at;
for (auto e : arr)
{
at.insert(make_pair(e, e));
cout << "insert:" << e << "->" << at.isBalance() << endl;
}
随机数测试(RBTree)
//const int N = 10000;
//srand((unsigned)time(0));
//RBTree rb;
//for (int i = 0; i < N; i++)
//{
// rb.insert(make_pair(rand(), rand()));
//}
//cout << rb.isBalance() << endl;
//随机数测试(AVLTree)
const int N = 10000;
srand((unsigned)time(0));
AVLTree<int, int> at;
for (int i = 0; i < N; i++)
{
at.insert(make_pair(rand(), rand()));
}
cout << at.isBalance() << endl;
return 0;
}
由于上面的AVL树对平衡的机制太过于严格,导致在插入的过程中要多次旋转树的结点,所以引入了这个叫红黑树。如图:
1.树的结点颜色不是红色就是黑色
2.如果父亲的颜色是红色,它的儿子只能是黑色
3.最长路径不超过最短路径的二倍
4.根结点是黑色
5.每个路径下的黑色结点数相同
#pragma once
#include
using namespace std;
enum Colour
{
RED,
BLACK
};
template<class Key,class Val>
struct RBTreeNode
{
RBTreeNode<Key, Val>* _left;
RBTreeNode<Key, Val>* _right;
RBTreeNode<Key, Val>* _parent;
pair<Key, Val> _p;
Colour _col;
RBTreeNode(const pair<Key, Val>& p)
:_left(nullptr)
, _right(nullptr)
, _parent(nullptr)
, _p(p)
, _col(RED)
{}
};
template<class Key,class Val>
class RBTree
{
typedef RBTreeNode<Key, Val> Node;
public:
RBTree()
:_root(nullptr)
{}
bool insert(const pair<Key, Val>& p)
{
if (_root == nullptr)
{
_root = new Node(p);
_root->_col = BLACK;
return true;
}
Node* parent = _root;
Node* cur = _root;
while (cur)
{
if (cur->_p.first > p.first)
{
parent = cur;
cur = cur->_left;
}
else
{
parent = cur;
cur = cur->_right;
}
}
cur = new Node(p);
if (parent->_p.first > p.first)
{
parent->_left = cur;
}
else
{
parent->_right = cur;
}
parent = cur->_parent;
while (parent&&parent->_col==RED)
{
Node* grandfather = parent->_parent;
//叔叔在左
if (parent == grandfather->_left)
{
Node* uncle = grandfather->_right;
//叔叔存在且叔叔为红色
if (uncle && uncle->_col == RED)
{
//变色加向上调整
parent->_col = BLACK;
uncle->_col = BLACK;
grandfather->_col = RED;
cur = grandfather;
parent = cur->_parent;
}
//叔叔不存在或者叔叔是黑色
else
{
if (cur == parent->_left)
{
RotateR(grandfather);
grandfather->_col = RED;
parent->_col = BLACK;
}
else
{
RotateL(parent);
RotateR(grandfather);
变色1
//cur->_col = BLACK;
//grandfather->_col = RED;
变色2
parent->_col = BLACK;
}
break;
}
}
else
{
Node* uncle = grandfather->_left;
if (uncle && uncle->_col == RED)
{
parent->_col = BLACK;
uncle->_col = BLACK;
grandfather->_col = RED;
cur = grandfather;
parent = cur->_parent;
}
else
{
if (cur == parent->_right)
{
RotateR(grandfather);
parent->_col = BLACK;
grandfather->_col = RED;
}
else
{
RotateL(parent);
RotateR(grandfather);
parent->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
}
_root->_col = BLACK;
return true;
}
bool isBalance()
{
return isBalance(_root);
}
bool checkcolour(Node* root, int basevalue,int blacknum)
{
if (root == nullptr)
{
if (basevalue != blacknum)
{
return false;
}
return true;
}
if (root->_col == RED && root->_parent && root->_col == RED)
{
return false;
}
if (root->_col == BLACK)
{
blacknum++;
}
return checkcolour(root->_left, basevalue, blacknum) &&
checkcolour(root->_right, basevalue, blacknum);
}
bool isBalance(Node* root)
{
if (root == nullptr)
{
return true;
}
if (root->_col != BLACK)
{
return false;
}
//计算最左路基中黑色结点数量
int basevalue = 0;
Node* cur = root;
while (cur)
{
if (cur->_col == BLACK)
{
basevalue++;
}
cur = cur->_left;
}
return checkcolour(root, basevalue,0);
}
private:
Node* _root;
void RotateL(Node* parent)
{
Node* cur = parent->_right;
Node* curleft = cur->_left;
Node* ppnode = parent->_parent;
parent->_left = curleft;
if (curleft)
{
curleft->_parent = parent;
}
cur->_right = parent;
parent->_parent = cur;
if (ppnode == nullptr)
{
_root = cur;
}
else
{
if (ppnode->_left = parent)
{
ppnode->_left = cur;
}
else
{
ppnode->_right = cur;
}
}
}
void RotateR(Node* parent)
{
Node* cur = parent->_left;
Node* curright = cur->_right;
Node* ppnode = parent->_parent;
parent->_right = curright;
if (curright)
{
curright->_parent = parent;
}
cur->_left = parent;
parent->_parent = cur;
if (ppnode == nullptr)
{
_root = cur;
}
else
{
if (ppnode->_left = parent)
{
ppnode->_left = cur;
}
else
{
ppnode->_right = cur;
}
}
}
};
#include"RBTree.h"
#include"AVLTree.h"
#include
int main()
{
int arr[] = { 4,2,6,1,3,5,15,7,16,14 };
RBTree<int, int> rb;
for (auto e : arr)
{
rb.insert(make_pair(e,e));
cout << "insert:" << e << "->" << rb.isBalance() << endl;
}
//int arr[] = { 4,2,6,1,3,5,15,7,16,14 };
//AVLTree at;
//for (auto e : arr)
//{
// at.insert(make_pair(e, e));
// cout << "insert:" << e << "->" << at.isBalance() << endl;
//}
//随机数测试(RBTree)
const int N = 10000;
srand((unsigned)time(0));
RBTree<int, int> rb;
for (int i = 0; i < N; i++)
{
rb.insert(make_pair(rand(), rand()));
}
cout << rb.isBalance() << endl;
随机数测试(AVLTree)
//const int N = 10000;
//srand((unsigned)time(0));
//AVLTree at;
//for (int i = 0; i < N; i++)
//{
// at.insert(make_pair(rand(), rand()));
//}
//cout << at.isBalance() << endl;
return 0;
}