- 深度学习算法在图算法中的应用(图卷积网络GCN和图自编码器GAE)
大嘤三喵军团
深度学习算法网络
深度学习算法在图算法中的应用1.图卷积网络(GraphConvolutionalNetworks,GCN)图卷积网络(GCN)是一种将卷积神经网络(ConvolutionalNeuralNetworks,CNN)推广到图结构数据的方法。GCN被广泛用于节点分类、图分类、链接预测等任务。优势和好处灵活性:GCN可以处理不规则和不均匀的数据结构,比如社交网络、分子结构、交通网络等。高效性:GCN使用局
- 自动编码器 - Autoencoder
hellozhxy
深度学习人工智能机器学习
文章目录一、自编码器(Autoencoder)简单模型介绍二、神经网络自编码模型三、神经网络自编码器三大特点四、自编码器(Autoencoder)搭建五、几种常见编码器1.堆栈自动编码器2.欠完备自编码器3.正则自编码器4.噪自编码器(denoisingautoencoder,DAE)参考链接一、自编码器(Autoencoder)简单模型介绍暂且不谈神经网络、深度学习等,仅仅是自编码器的话,其原理
- Autoencoder
chuange6363
人工智能python
自编码器Autoencoder稀疏自编码器SparseAutoencoder降噪自编码器DenoisingAutoencoder堆叠自编码器StackedAutoencoder本博客是从梁斌博士的博客上面复制过来的,本人利用Tensorflow重新实现了博客中的代码深度学习有一个重要的概念叫autoencoder,这是个什么东西呢,本文通过一个例子来普及这个术语。简单来说autoencoder是一
- 点云从入门到精通技术详解100篇-点云特征学习模型及其在配准中的应用
格图素书
学习
目录前言应用前景国内外研究现状点云特征提取算法研究现状点云配准算法研究现状相关理论基础2.1深度学习2.1.1深度学习概述2.1.2自编码器2.1.3稀疏编码2.1.4受限玻尔兹曼机2.2多层感知机2.2.1多层感知机概述2.2.2感知器与多层感知机2.2.3多层感知机的训练2.3点云配准方法2.3.1无点对应关系的点云配准方法2.3.2基于对应关系的点云配准方法2.4评价指标2.4.1点云配准评
- MixMAE(MixMIM):用于分层视觉变压器有效预训练的混合和掩码自编码器 论文阅读
皮卡丘ZPC
扩散模型阅读论文阅读
论文:MixMAE(arxiv.org)代码:Sense-X/MixMIM:MixMIM:MixedandMaskedImageModelingforEfficientVisualRepresentationLearning(github.com)摘要:本文提出MixMAE(MixedandmaskAutoEncoder),这是一种简单而有效的预训练方法,适用于各种层次视觉变压器。现有的分层视觉变
- stl文件 python_STL_10数据集处理
weixin_39614094
stl文件python
这次要写的是stl10用于自编码器自编码,又称自编码器(autoencoder),是神经网络的一种,经过训练后能尝试将输入复制到输出。自编码器(autoencoder)内部有一个隐藏层h,可以产生编码(code)表示输入。该网络可以看作由两部分组成:一个由函数h=f(x)表示的编码器和一个生成重构的解码器r=g(h)。自编码器(Autoencoder,AE)是一个3层或者大于3层的神经网络,将输入
- 看demo学算法之 自编码器
小琳ai
算法
大家好,这里是小琳AI课堂!今天我们来聊聊自编码器。AE自编码器,全称为Autoencoder,是一种数据压缩算法,它能够通过学习输入数据的有效表示(编码)来重建输入数据(解码)。自编码器通常被用于无监督学习任务,尤其是在降维、特征学习、数据去噪等领域。下面,我将从四个不同的角度来详细解释AE自编码器。1.技术细节自编码器由两部分组成:编码器(encoder)和解码器(decoder)。编码器负责
- 高校为什么需要AIGC大数据实验室?
泰迪智能科技01
AIGCAIGC大数据
AIGC大数据实验室是一个专注于人工智能生成内容(AIGC)和大数据相关技术研究、开发与应用的创新实验平台。AIGC主要研究方向包括:AIGC技术创新、大数据处理与分析、AIGC与大数据融合应用。AIGC技术创新:探索如何利用人工智能算法,如深度学习中的生成对抗网络(GAN)、变分自编码器(VAE)、基于Transformer架构的语言模型(如GPT系列)等,来高效地生成高质量的文本、图像、音频、
- 探索Stable Diffusion:AI在艺术创作中的无限可能
master_chenchengg
AI技术探讨AI人工智能AIGC行业分析
探索StableDiffusion:AI在艺术创作中的无限可能引言一、StableDiffusion简介定义与历史技术原理概述二、工作原理深入解析扩散模型基础逆向扩散过程详解潜空间与变分自编码器(VAE)U-Net架构的作用三、StableDiffusion与艺术创作的融合创作自由度的提升个性化风格的实现跨媒介艺术的可能性四、案例研究艺术家应用StableDiffusion的实例与传统艺术形式的对
- Python深度学习:构建下一代智能系统
2401_83402415
pythonpython深度学习开发语言Transformer模型目标检测算法Attention
近年来,伴随着以卷积神经网络(CNN)为代表的深度学习的快速发展,人工智能迈入了第三次发展浪潮,AI技术在各个领域中的应用越来越广泛。为了帮助广大学员更加深入地学习人工智能领域最近3-5年的新理论与新技术,本文讲解注意力机制、Transformer模型(BERT、GPT-1/2/3/3.5/4、DETR、ViT、SwinTransformer等)、生成式模型(变分自编码器VAE、生成式对抗网络GA
- Stable Diffusion
Covirtue
人工智能pythonstablediffusion
StableDiffusion是一种基于深度学习的文本到图像生成模型,其原理主要基于扩散模型(DiffusionModel)的变体,即潜在扩散模型(LatentDiffusionModel,LDM)。原理一、技术架构与组成StableDiffusion由三个主要部分组成:变分自编码器(VAE)、U-Net和一个文本编码器。变分自编码器(VAE):VAE是一种生成模型,用于将图像压缩到低维的潜在空间
- 文献01-单细胞多组学
hlllllllhhhhh
文献-单细胞多组学python
目录【SIMBA系列教程】回顾:KDD2024|HiGPT:当大模型遇上图神经网络Nat.Biotechnol2023|利用MaxFuse整合空间和单细胞数据跨模态弱链接的特征Nat.Commun2024|"单细胞蝴蝶":基于双对齐变分自编码器的通用单细胞跨模态翻译方法 Nat.Biotech.|LINGER从单细胞多组学数据推断基因调控网络生信乐园#scRNA-seq数据分析#scATAC-se
- 2018-09-08
54f0d725963c
日精进最近天气变凉,前段时间感冒咳嗽到现在还没好,自己平时得多注意了,做好身体健康管理。核心:身体是一切的本钱转身用:多注意保养身体
- 用自编码器检测小波散射异常 MATLAB
闪闪发亮的小星星
数字信号处理与分析matlab开发语言
小波散射LSTM自编码器卷积自编码器卷积自编码器比LSTM自编码器快!modwpt主要参考:https://ww2.mathworks.cn/help/wavelet/ug/detect-anomalies-using-wavelet-scattering-with-autoencoders.html代码及部分注释%加载数据parentDir='';%ifexist(fullfile(parent
- 2018-09-08
香芋evey
缘深缘浅,缘聚缘散,惜缘随缘莫攀缘。我在拥有的时候总害怕失去,担心并没有带来好结果,墨菲定律总会发生在我身上,不会缓和玩笑,还总是把别人的话当真,我可能真的是幼稚又愚蠢吧…一直觉得我是真心在意的话就要认真对待,可当我把本真的我自己暴露出来的时候,又会遭到别人的反感。无心无愁,说的多好呀,真的很羡慕那些可以大大咧咧,不被别人情绪左右的朋友。读书真的让人受益啊!"人没有好坏,只有真假",一直觉得自己没
- 变分自编码器(VAE)PyTorch Lightning 实现
小嗷犬
Python深度学习pytorch人工智能python
✅作者简介:人工智能专业本科在读,喜欢计算机与编程,写博客记录自己的学习历程。个人主页:小嗷犬的个人主页个人网站:小嗷犬的技术小站个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。本文目录VAE简介基本原理应用与优点缺点与挑战使用VAE生成MNIST手写数字忽略警告导入必要的库设置随机种子cuDNN设置超参数设置数据加载定义VAE模型定义损失函数定义Lightning模型训练模型绘制训
- 生成网络总结
研三小学渣
学习笔记深度学习人工智能
AE(AutoEncoder)自编码器标准的AE由编码器(encoder)和解码器(decoder)两部分组成,。整个模型可以看作一个“压缩”与“解压”的过程:首先编码器将真实数据(真实样本)压缩为低维隐空间中的一个隐向量,该向量可以看作输入的“象征”;然后解码器将这个隐向量解压,得到生成数据(生成样本)。在训练过程中,会将生成样本与真实样本进行比较,朝着减小二者之间差异的方向去更新编码器和解码器
- Stable Diffusion系列(六):原理剖析——从文字到图片的神奇魔法(潜空间篇)
羊城迷鹿
多模态模型stablediffusionlatent潜空间论文
文章目录LDM概述原理模型架构自编码器模型扩散模型条件引导模型图像生成过程实验结果指标定义IS(越大越好)FID(越小越好)训练成本与采样质量分析不带条件的图片生成基于文本的图片生成基于语义框的图片生成基于语义图的图片生成超分辨率图像生成图像重绘其他文生图模型DALL-EImagen在上一章,我们了解了扩散模型的基本原理,但它离实现StableDiffusion的文生图或图生图功能显然还有一段距离
- 2018-09-08
富景流觞
就在医院,望望东望望西。要么单位,赶回来跑过去。颠簸的泥泞破路,还要几许方能畅通?漂泊的异乡远方,何处才是安心终点?曾几何时了却这牵挂…图片发自App
- 【医学知识图谱 自动补全 关系抽取】生成模型 + 医学知识图谱 = 发现三元组隐藏的关系实体对
Debroon
医学大模型:个性化精准安全可控知识图谱人工智能
生成模型+医学知识图谱=发现三元组新关系实体对提出背景问题:如何自动发现并生成医疗领域中未被标注的实体关系三元组?CRVAE模型提出背景论文:https://dl.acm.org/doi/pdf/10.1145/3219819.3220010以条件关系变分自编码器(CRVAE)模型为基础,解决关系医疗实体对发现问题,并生成新的、有意义的医疗实体对。尽管有些疾病与症状之间的关系已经被广泛记录,但仍然
- DS Wannabe之5-AM Project: DS 30day int prep day14
wendyponcho
深度学习人工智能python学习机器学习
Q1.WhatisAutoencoder?自编码器是什么?自编码器是一种特殊类型的神经网络,它通过无监督学习尝试复现其输入数据。它通常包含两部分:编码器和解码器。编码器压缩输入数据成为一个低维度的中间表示,解码器则从这个中间表示重建输出,输出尽可能接近原始输入。自编码器常用于特征学习、降维和去噪。Autoencoderneuralnetwork:ItisanunsupervisedMachinel
- 2018-09-08
酷酷的峰666
今日体验:上几天给一辆本田换轮胎总是报警今天拆下来检查半天发现有漏气的地方最后处理处理让客户在观察观察!
- 数据降维方法介绍(十二)
科技小白不能再白了
第八种方法:自编码器降维姓名:何源学号:21011210073学院:通信工程学院转载:基于自编码网络AutoEncoder完成数据降维并且提取数据的本质特征【嵌牛导读】自编码器降维方法简介【嵌牛鼻子】自编码器【嵌牛提问】自编码器降维原理是什么?【嵌牛正文】数据降维的意思是什么?一维数据我们可以认为它是一个点,二维数据是一条线,三维数据是一个面,但四维数据我们就想象不到了,但这并不意味着不存在。对于
- 多练习
gyf16
高艳峰信阳网络中级九期坚持分享第163天2018-09-08昨晚S老师发出今天清晨的约练邀请,一看时间正如我意,立即应约,转瞬间Z老师也加入进来,妥了!立即将闹钟调好,接下來写自己的"作业“至凌晨2点多才睡下。今天一大早我们三人如约相聚在安全的练习室,二位老师把咨询师的机会让给了我,我快速地思索了一下:目标资原一小步,久违的角色,难得的锻炼,我努力一把。而S老师作为来访者给予我信任让我有了信心,我
- 什么是 OpenAI 的 Dall-E 模型
OpenAI的Dall-E是一款革命性的人工智能模型,它专注于图像生成领域。这个模型基于深度学习和生成对抗网络(GAN)的原理,能够根据用户输入的描述生成高质量、富有创意的图像。Dall-E的名字来源于著名的画家SalvadorDalí和Pixar的动画电影「Wall-E」,寓意着它在艺术创造和机器智能方面的结合。Dall-E的核心技术基于变分自编码器(VAE)和GPT模型。VAE是一种生成模型,
- Python环境下基于指数退化模型和LSTM自编码器的轴承剩余寿命预测
哥廷根数学学派
信号处理深度学习故障诊断pythonlstm人工智能信号处理算法
滚动轴承是机械设备中关键的零部件之一,其可靠性直接影响了设备的性能,所以对滚动轴承的剩余使用寿命(RUL)进行预测是十分必要的。目前,如何准确地对滚动轴承剩余使用寿命进行预测,仍是一个具有挑战的课题。对滚动轴承剩余寿命评估过大或过小均存在不良后果,轴承寿命的提前截止会导致严重的事故,而提前更换轴承则会增加设备维护成本。目前建立轴承寿命预测模型需要完整寿命周期的轴承数据作为支撑,在实际运用过程中,轴
- 2018-10-27
闵慧贤
2018-10-20闵慧贤2018-10-2019:49·字数735·阅读0·日记本2018-10-11闵慧贤2018-10-1119:47·字数629·阅读0·日记本2018-09-22闵慧贤2018-09-2220:36·字数498·阅读1·日记本2018-09-17闵慧贤2018-09-1720:17·字数428·阅读0·日记本2018-09-08闵慧贤2018-09-0820:47·字数3
- 深度学习入门笔记(九)自编码器
zhanghui_cuc
深度学习笔记深度学习笔记人工智能
自编码器是一个无监督的应用,它使用反向传播来更新参数,它最终的目标是让输出等于输入。数学上的表达为,f(x)=x,f为自编码器,x为输入数据。自编码器会先将输入数据压缩到一个较低维度的特征,然后利用这个较低维度的特征重现输入的数据,重现后的数据就是自编码器的输出。所以,从本质上来说,自编码器就是一个压缩算法。自编码器由3个部分组成:编码器(Encoder):用于数据压缩。压缩特征向量(Compre
- 深入理解vqvae
Adenialzz
人工智能机器学习计算机视觉
深入理解vqvaeTL;DR:通过vectorquantize技术,训练一个离散的codebook,实现了图片的离散表征。vqvae可以实现图片的离散压缩和还原,在图片自回归生成、StableDiffusion中,有重要的应用。从AE和VAE说起AE(AutoEncoder,自编码器)是非常经典的一种自监督表征学习方法,它由编码器encoder和解码器decoder构成,编码器提取输入图像的低维特
- 2018-09-08
656fae486122
9月8号侨香店应到人数:16实到人数:14请假人数:2(君君,樱夏)今日定金:10定金总数:295今日资源:174资源总数:11606今天工作总结1.早上玲玲小组在中旅公馆摆台,早8.30就去物业找她们了,其她小组9.30集合。差不多9点才进去,今天周六孩子特别多,进出的人一般,但是也加到资源了,决定明天再摆台一天。2.下午没有集合。15:00前出门收资源,只有三个人回去休息。3.核对9.9参加活
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不