- Latent World Model 架构实战:具身智能中的隐空间建模与状态压缩
观熵
具身智能(EmbodiedAI)架构人工智能具身智能
LatentWorldModel架构实战:具身智能中的隐空间建模与状态压缩关键词具身智能、LatentWorldModel、状态建模、变分自编码器、感知压缩、动态预测、多模态对齐、认知建模、世界模型、状态表示学习摘要在具身智能系统中,世界模型(WorldModel)构建是认知能力的核心,而其中的“隐空间建模与状态压缩”技术决定了智能体对环境的理解深度与动作决策的效率。本文基于2025年最新开源项目
- 生成对抗网络(GAN)与深度生成模型实战
软考和人工智能学堂
人工智能Python开发经验#DeepSeek快速入门开发语言
1.生成模型基础与GAN原理1.1生成模型概览生成模型是深度学习中的重要分支,主要分为以下几类:变分自编码器(VAE):基于概率图模型的生成方法生成对抗网络(GAN):通过对抗训练学习数据分布自回归模型:PixelCNN、WaveNet等流模型(Flow-basedModels):基于可逆变换的精确密度估计扩散模型(DiffusionModels):最新兴起的生成方法1.2GAN核心思想GAN由生
- SAE层、BPNN层结合的深度学习模型
sbc-study
深度学习人工智能机器学习
EarlyFaultDetectionofMachineToolsBasedonDeepLearningandDynamicIdentificationBoLuo,HaotingWang,HongqiLiu,BinLi,andFangyuPengIEEETRANSACTIONSONINDUSTRIALELECTRONICS,VOL.66,NO.1,JANUARY2019一SAE层(栈式自编码器层-
- AI学习指南深度学习篇-变分自编码器的应用与扩展
俞兆鹏
AI学习指南ai
AI学习指南深度学习篇-变分自编码器的应用与扩展目录引言变分自编码器概述变分自编码器在图像生成中的应用变分自编码器在图像重建中的应用
- 变分自编码器的扩展模型:条件VAE
AI天才研究院
AIAgent应用开发LLM大模型落地实战指南AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
变分自编码器的扩展模型:条件VAE作者:禅与计算机程序设计艺术1.背景介绍近年来,变分自编码器(VariationalAutoencoder,VAE)作为一种强大的生成式模型,在图像生成、文本生成等任务中展现出了卓越的性能。VAE通过学习数据分布的潜在表示,能够生成与训练数据相似的新样本。然而,标准的VAE模型无法对生成的内容进行控制,这限制了它在实际应用中的灵活性。为了解决这一问题,研究人员提出
- 【深度学习】自编码器:数据压缩与特征学习的神经网络引擎
瑶光守护者
深度学习学习神经网络人工智能机器学习强化学习
作者选择了由IanGoodfellow、YoshuaBengio和AaronCourville三位大佬撰写的《DeepLearning》(人工智能领域的经典教程,深度学习领域研究生必读教材),开始深度学习领域学习,深入全面的理解深度学习的理论知识。之前的文章参考下面的链接:【深度学习】线性因子模型:数据降维与结构解析的数学透镜【学习笔记】强化学习:实用方法论【学习笔记】序列建模:递归神经网络(RN
- 生成式AI模型学习笔记
Humbunklung
机器学习人工智能学习笔记机器学习深度学习
文章目录生成式AI模型1.定义2.生成式模型与判别式模型3.深度生成式模型的类型3.1能量模型3.2变分自编码3.2.1变分自编码器(VariationalAutoencoder,VAE)简介3.2.2代码示例(以PyTorch为例)3.3生成对抗网络3.4流模型3.4.1流模型简介3.4.2NICE:开创性流模型3.4.3流模型与VAE、GAN的区别3.5自回归模型3.5.1自回归模型简介3.5
- 从 “被动拦截” 到 “智能预判”:下一代防火墙的五大核心技术突破
柏睿网络
人工智能
传统防火墙如同仅能按"剧本"执行的机械门卫,面对复杂多变的网络威胁时,常因规则滞后、检测粗放而陷入被动。下一代防火墙(NGFW)通过五大核心技术突破,构建起以"智能预判"为核心的主动防御体系,实现从"事后响应"到"事前阻断"的范式革命。一、AI驱动的威胁检测引擎:从规则匹配到行为建模技术突破机器学习驱动的异常检测抛弃传统的"特征码匹配"模式,采用无监督学习算法(如孤立森林、VAE变分自编码器)构建
- 入选 ICML 2025,清华/人大/字节提出首个跨分子种类统一生成框架 UniMoMo,实现多类型药物分子设计
hyperai
清华大学刘洋老师组、人民大学高瓴人工智能学院黄文炳老师组、字节跳动AI制药团队共同提出了一种跨分子种类统一生成框架UniMoMo。该框架基于分子片段(block)对不同种类的分子进行统一表示,使用变分自编码器对每个block的全原子构象进行压缩,并在压缩后的隐空间进行几何扩散建模(diffusion),从而实现对同一靶点不同结合分子种类(小分子、多肽、抗体)的设计。UniMoMo在多类分子任务基准
- 【课堂笔记】生成对抗网络 Generative Adversarial Network(GAN)
zyq~
机器学习笔记生成对抗网络人工智能机器学习概率论GAN
文章目录问题背景原理更新过程判别器生成器问题背景 一方面,许多机器学习任务需要大量标注数据,但真实数据可能稀缺或昂贵(如医学影像、稀有事件数据)。如何在少量数据中达到一个很好的训练效果是一个很重要的问题。 另一方面,传统生成模型(如变分自编码器VAE)生成的样本往往模糊或缺乏多样性,难以捕捉真实数据的复杂分布(如高分辨率图像、复杂文本等)。 生成式对抗网络(GAN)提出了用生成器(Gener
- 一文解析13大神经网络算法模型架构
攻城狮7号
AI前沿技术要闻深度学习神经网络人工智能机器学习
目录一、引言:神经网络的演进脉络二、基础架构:深度学习的基石2.1人工神经网络(ANN)2.2深度神经网络(DNN)三、专项任务架构:领域定制化突破3.1卷积神经网络(CNN)3.2循环神经网络(RNN)3.3图神经网络(GNN)四、生成模型:从数据到创造4.1生成对抗网络(GAN)4.2变分自编码器(VAE)4.3扩散模型(DiffusionModels)五、现代架构:大模型的核心引擎5.1Tr
- 【图像生成大模型】Wan2.1:下一代开源大规模视频生成模型
白熊188
图像大模型开源音视频人工智能计算机视觉文生图
Wan2.1:下一代开源大规模视频生成模型引言Wan2.1项目概述核心技术1.3D变分自编码器(Wan-VAE)2.视频扩散Transformer(VideoDiffusionDiT)3.数据处理与清洗项目运行方式与执行步骤1.环境准备2.安装依赖3.模型下载4.文本到视频生成单GPU推理多GPU推理5.图像到视频生成6.首尾帧到视频生成执行报错与问题解决1.显存不足2.环境依赖问题3.模型下载问
- 生成式人工智能:创意产业的变革力量
Blossom.118
分布式系统与高性能计算领域人工智能去中心化区块链交互web3机器学习目标检测
引言随着人工智能技术的飞速发展,生成式人工智能(GenerativeAI)逐渐成为科技领域的热门话题。生成式人工智能通过深度学习算法,能够生成文本、图像、音乐、视频等多种内容,为创意产业带来了前所未有的机遇。本文将探讨生成式人工智能在创意产业中的应用、技术原理以及未来的发展趋势。一、生成式人工智能简介(一)定义与原理生成式人工智能是一种利用深度学习算法(如生成对抗网络GAN、变分自编码器VAE和T
- AI大模型全景干货:分类、特点、应用、数据与学习指南
程序员辣条
人工智能大模型训练大模型AI大模型程序员大模型入门大模型教程
随着人工智能技术的飞速发展,AI大模型在众多领域取得了显著成果。本文将介绍AI大模型的种类、特点、应用及其详细数据。一、AI大模型的分类1、按模型结构分类(1)深度神经网络(DNN):包括卷积神经网络(CNN)、循环神经网络(RNN)等。(2)生成对抗网络(GAN):通过对抗训练,使生成模型能够生成与真实数据分布相近的数据。(3)变分自编码器(VAE):通过编码器和解码器实现对数据的压缩和重建。2
- 【神经网络与深度学习】VAE 中的先验分布指的是什么
如果树上有叶子
神经网络与深度学习深度学习神经网络人工智能
VAE中的先验分布是什么?在变分自编码器(VAE)中,先验分布指的是对潜在空间中随机变量的概率分布假设。通常情况下,VAE设定潜在变量服从标准正态分布(N(0,I)),其中(0)代表均值为零的向量,(I)为单位协方差矩阵。选择标准正态分布作为先验分布的原因主要有以下几点:数学上的便利性:标准正态分布具有良好的数学性质,计算和推导更加简洁,便于模型的优化和训练。结构化的潜在空间:这种假设能够促使模型
- AI大模型干货 | AI大模型的分类、特点、应用、详细数据、如何学习大模型?
大模型RAG实战
人工智能学习AI大模型大模型LLMaiagi
随着人工智能技术的飞速发展,AI大模型在众多领域取得了显著成果。本文将介绍AI大模型的种类、特点、应用及其详细数据。一、AI大模型的分类1、按模型结构分类(1)深度神经网络(DNN):包括卷积神经网络(CNN)、循环神经网络(RNN)等。(2)生成对抗网络(GAN):通过对抗训练,使生成模型能够生成与真实数据分布相近的数据。(3)变分自编码器(VAE):通过编码器和解码器实现对数据的压缩和重建。2
- 《大规模电动汽车充换电设施可调能力聚合评估与预测》MATLAB实现计划
小彭律师
matlab机器学习开发语言
模型概述根据论文,我将复刻实现结合长短期记忆网络(LSTM)和条件变分自编码器(CVAE)的预测方法,用于电动汽车充换电设施可调能力的聚合评估与预测。实现步骤1.数据预处理导入充电数据(Charging_Data.csv)导入天气数据(Weather_Data.csv)导入电价数据(Time-of-use_Price.csv)数据清洗和特征提取将数据分割为训练集和测试集2.模型实现实现LSTM模型
- 深入浅出:AIGC条件生成模型架构解析
AI天才研究院
AIGC架构ai
深入浅出:AIGC条件生成模型架构解析关键词:AIGC、条件生成模型、生成对抗网络、变分自编码器、Transformer、扩散模型、多模态生成摘要:本文系统解析AIGC(人工智能生成内容)领域中条件生成模型的核心架构与技术原理。从基础概念出发,对比条件生成与无条件生成的本质区别,深入剖析条件GAN、条件VAE、基于Transformer的条件生成模型及扩散模型的架构设计与数学原理。通过Python
- Keras深度学习实战——自编码器详解
鱼弦
机器学习设计类系统深度学习keras人工智能
鱼弦:公众号【红尘灯塔】,CSDN博客专家、内容合伙人、新星导师、全栈领域优质创作者、51CTO(Top红人+专家博主)、github开源爱好者(go-zero源码二次开发、游戏后端架构https://github.com/Peakchen)Keras深度学习实战——自编码器详解简介自编码器(AutoEncoder)是一种无监督学习算法,它通过学习输入数据的潜在表示来实现数据降维和特征提取。自编码
- 【神经网络与深度学习】普通自编码器和变分自编码器的区别
如果树上有叶子
神经网络与深度学习深度学习神经网络人工智能自编码器变分自编码器
引言自编码器(Autoencoder,AE)和变分自编码器(VariationalAutoencoder,VAE)是深度学习中广泛应用的两类神经网络结构,主要用于数据的压缩、重构和生成。然而,二者在模型设计、训练目标和生成能力等方面存在显著区别。普通自编码器侧重于高效压缩数据并进行无损重构,而变分自编码器则通过潜在空间的概率分布,增强了模型的生成能力和泛化性能。本文将从多个角度探讨AE和VAE的不
- ACE-Step:扩散自编码文生音乐基座模型快速了解
Panesle
前沿文本生成音乐音频扩散模型大模型transformer
ACE-Step模型速读一、模型概述ACE-Step是一款由ACEStudio和StepFun开发的新型开源音乐生成基础模型。它通过整合基于扩散的生成方式、Sana的深度压缩自编码器(DCAE)以及轻量级线性变换器,在音乐生成速度、音乐连贯性和可控性等方面达到前所未有的高度,成功克服了现有方法的关键局限性。二、关键特性高效性:在生成速度上ACE-Step表现卓越,相比基于大型语言模型(LLM)的基
- 赢者通吃自编码器(WTA-AE)
wzg2016
参考:1.论文:winner-take-all-autoencoders.pdf2.代码:a.fullconnectWTA-AEb.Conv-WTA-AE简单理解:spatialsparsity:对卷积得到的feature-map-tensor(shape=[N,H,W,C]),沿每个channel,是一个H*W的张量,仅仅保留这个H*W的张量上的最大值,其余数值元素置零。lifetimespar
- AIGC 游戏:AIGC 领域的新兴潮流
AI原生应用开发
CSDNAIGC游戏ai
AIGC游戏:AIGC领域的新兴潮流关键词:AIGC、游戏开发、生成式AI、智能NPC、动态叙事、proceduralgeneration、玩家体验摘要:本文深入探讨AIGC(人工智能生成内容)在游戏领域的创新应用,解析其核心技术原理、典型应用场景及产业影响。通过分析生成式对抗网络(GAN)、变分自编码器(VAE)、大型语言模型(LLM)等核心算法,结合Unity/UE引擎实战案例,揭示AIGC如
- PixelFlow:像素空间生成模型的新范式(代码实现)
阿正的梦工坊
DeepLearningDLPapers深度学习人工智能自然语言处理transformer
PixelFlow:像素空间生成模型的新范式近年来,生成模型在图像、视频和音频等多模态生成任务中取得了显著进展。然而,主流的潜在空间扩散模型(LatentDiffusionModels,LDMs)依赖于预训练的变分自编码器(VAE),将数据压缩到潜在空间以降低计算成本。这种方法虽然高效,但分离的VAE和扩散模型训练阻碍了端到端的优化,且潜在空间的压缩可能损失高频细节。针对这些问题,来自香港大学和A
- 大语言模型应用指南:图像生成
AI智能涌现深度研究
DeepSeekR1&大数据AI人工智能Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型应用指南:图像生成关键词:大语言模型,图像生成,文本到图像,生成对抗网络,变分自编码器,扩散模型1.背景介绍1.1问题的由来图像生成作为计算机视觉和人工智能领域的一个重要分支,一直是众多学者和工程师关注的焦点。近年来,随着深度学习技术的快速发展,基于大语言模型(LargeLanguageModel,LLM)的图像生成技术取得了突破性的进展。这些技术能够根据自然语言描述生成高质量的图像,为
- 生成对抗网络(GAN)在计算机视觉中的全面解析
t0_54manong
大数据与人工智能生成对抗网络计算机视觉人工智能个人开发
在现代深度学习应用中,从计算机视觉到自然语言处理,数据生成方法多种多样。如今,我们已经能够生成几乎能以假乱真的生成数据。生成学习大致可分为两大类:变分自编码器(VAE)和生成对抗网络(GAN)。为什么不只用自编码器很多人疑惑,为什么研究人员要使用复杂的GAN,而不是简单地使用自编码器并最小化均方误差,让预测图像与目标图像匹配呢?原因在于,这类模型在图像生成方面效果不佳。仅仅最小化距离会因为平均化操
- 基于神经网络的聚类算法(1)——自组织映射神经网络(SOM)
root-cause
聚类算法原理解析及实现算法神经网络聚类
基于神经网络的聚类算法(1)——自组织映射神经网络(SOM)基于神经网络的聚类算法(2)——自编码器(AE)1.基于神经网络的聚类算法基于神经网络的聚类算法是一种利用神经网络模型进行数据聚类的方法。与传统的聚类算法相比,基于神经网络的聚类算法具有更强的非线性建模能力和自适应性,可以处理复杂的数据分布和高维数据。常见的基于神经网络的聚类算法包括自组织映射(SOM)、自编码器(Autoencoder)
- 【学习笔记(0)】Variational Autoencoder 变分自编码器
该账户已不存在
学习笔记人工智能机器学习自编码器
本文是VAE的学习笔记,是阅读多个网站的intro时记录的阅读笔记。VariationalAutoencodersExplained-https://anotherdatum.com/vae.html讲的很细,但看完之后不太有整体思路GenerativeModeling:WhatisaVariationalAutoencoder(VAE)?-https://www.mlq.ai/what-is-a
- 深度学习 Deep Learning 第14章 自编码器
odoo中国
人工智能深度学习人工智能自编码器
深度学习DeepLearning第14章自编码器内容概要本章深入探讨了自编码器(Autoencoders),这是一种用于特征学习和降维的神经网络架构。自编码器通过编码器和解码器两个部分,将输入数据映射到一个内部表示(编码),然后通过解码器重建输入数据。自编码器的设计使其无法完美地复制输入,从而迫使模型学习输入数据的有用特征。本章详细介绍了自编码器的多种变体及其在生成模型和流形学习中的应用。主要内容
- 第五十三周:文献阅读
m0_66015895
人工智能python算法
目录摘要Abstract文献阅读:一种用于室内空气质量预测的新型变分自编码器深度学习框架现有问题提出方法方法论1、偏最小二乘(PLS)2、变分自动编码器(VAE)3、变分自动编码器回归器(VAER)所提出的方法(PLS-VAER)研究实验1、数据集2、评估指标3、实验过程4、实验结果代码实现总结摘要本周我阅读的文献《Anoveldeeplearningframeworkwithvariationa
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不