- 0 Token 间间隔 100% GPU 利用率,百度百舸 AIAK 大模型推理引擎极限优化 TPS
百度云大模型gpu
01什么是大模型推理引擎大模型推理引擎是生成式语言模型运转的发动机,是接受客户输入prompt和生成返回response的枢纽,也是拉起异构硬件,将物理电能转换为人类知识的变形金刚。大模型推理引擎的基本工作模式可以概括为,接收包括输入prompt和采样参数的并发请求,分词并且组装成batch输入给引擎,调度GPU执行前向推理,处理计算结果并转为词元返回给用户。和人类大脑处理语言的机制类似,大模型首
- 【论文阅读】Persistent Homology Captures the Generalization of Neural Networks Without A Validation Set
开心星人
论文阅读论文阅读
将神经网络表征为加权的无环图,直接根据模型的权重矩阵构造PD。计算相邻batch的权重矩阵PD之间的距离。比较同调收敛性与神经网络的验证精度变化趋势摘要机器学习从业者通常通过监控模型的某些指标来估计其泛化误差,并在训练数值收敛之前停止训练,以防止过拟合。通常,这种误差度量或任务相关的指标是通过一个验证集(holdoutset)来计算的。因为这些数据没有直接用于更新模型参数,通常假设模型在验证集上的
- vLLM 部署大模型
哦豁灬
深度学习LLM人工智能vLLM大模型部署LLM
1介绍vLLM是来自UCBerkeley的LMSYS在LLM推理方面的最新工作(没错就是搞出Vicuna的那个group),最大亮点是采用PagedAttention技术,结合ContinuousBatching,极大地优化了realtime场景下的LLMserving的throughput与内存使用。vllmgithub仓库1.1安装安装命令:pip3installvllm#vllm==0.2.
- 卷积神经网络Batch Normalization的作用
arron8899
cnnbatch人工智能
BatchNormalization的作用(通俗版)1.像“稳定器”一样校准每层输入想象你在烤多层蛋糕,每层蛋糕的烘烤温度不同(相当于神经网络的每一层数据分布不同)。没有BN时,烤箱温度忽高忽低,导致有的层烤焦(梯度爆炸),有的层不熟(梯度消失)。BN的作用相当于给每一层装了一个自动温度调节器,实时将输入数据调整到标准温度(均值为0,方差为1),保证每层都能均匀受热,训练更稳定。2.让模型训练“少
- kafka生产消息失败 ...has passed since batch creation plus linger time
Lichenpar
#记录BUG解决kafka网络安全java
背景:公司要使用华为云的kafka服务,我负责进行技术预研,后期要封装kafka组件。从华为云下载了demo,完全按照开发者文档来进行配置文件配置,但是会报以下错误。org.apache.kafka.common.errors.TimeoutException:Expiring10record(s)fortopic-0:30015mshaspassedsincebatchcreationplusl
- PHP接入阿里云图片审核
骑着蜗牛闯宇宙
xiaophp阿里云开发语言
多个service使用接口ImageBatchModerationgetenv("ALIBABA_CLOUD_ACCESS_KEY_ID"),//必填,请确保代码运行环境设置了环境变量ALIBABA_CLOUD_ACCESS_KEY_SECRET。"accessKeySecret"=>getenv("ALIBABA_CLOUD_ACCESS_KEY_SECRET")]);//Endpoint请参考
- 注意力机制:让AI拥有“黄金七秒记忆“的魔法----(点积注意力)
y江江江江
机器学习大模型人工智能深度学习
注意力机制:让AI拥有"黄金七秒记忆"的魔法–(点积注意力)注意⼒机制对于初学者来说有点难理解,我们⼀点⼀点地讲。现在先暂时忘记编码器、解码器、隐藏层和序列到序列这些概念。想象我们有两个张量x1和x2,我们希望⽤注意⼒机制把它俩给衔接起来,让x1看⼀看,x2有哪些特别值得关注的地⽅。具体来说,要得到x1对x2的点积注意⼒,我们可以按照以下步骤进⾏操作。(1)创建两个形状分别为(batch_size
- NLP高频面试题(四)——BN和LN的区别与联系,为什么attention要用LN
Chaos_Wang_
NLP常见面试题自然语言处理人工智能
在深度学习模型中,Normalization是一种极为重要的技巧,BatchNormalization(BN)和LayerNormalization(LN)是其中最为常用的两种方法。然而,二者在实际应用中有着明显的区别与联系,尤其在Transformer的Attention机制中,LN有着独特的优势。一、BN与LN的核心区别与联系1.BatchNormalization(BN)BN的思想源于一个叫
- pytorch的使用:卷积神经网络模块
樱花的浪漫
pytorchcnnpytorch深度学习计算机视觉
1.读取数据分别构建训练集和测试集(验证集)DataLoader来迭代取数据使用transforms将数据转换为tensor格式#定义超参数input_size=28#图像的总尺寸28*28num_classes=10#标签的种类数num_epochs=3#训练的总循环周期batch_size=64#一个撮(批次)的大小,64张图片#训练集train_dataset=datasets.MNIST(
- Pytorch Dataloader入门
gy-7
pytorch深度学习机器学习
PytorchDataloadercode:torch/utils/data/dataloader.py#L71PytorchDatasettutorial:tutorials/beginner/basics/data_tutorial.html理论:在训练模型时,我们通常希望:以“mini-batch”方式传递样本,能够加速训练。每个epoch都shuffle数据,能够减少模型过拟合。使用Pyt
- 21-梯度累积原理与实现
机器人图像处理
深度学习算法与模型人工智能深度学习YOLO
一、基本概念在深度学习训练的时候,数据的batchsize大小受到GPU内存限制,batchsize大小会影响模型最终的准确性和训练过程的性能。在GPU内存不变的情况下,模型越来越大,那么这就意味着数据的batchsize智能缩小,这个时候,梯度累积(GradientAccumulation)可以作为一种简单的解决方案来解决这个问题。二、Batchsize的作用训练数据的Batchsize大小对训
- max_samples,batch_size,gradient_accumulation_steps这三个分别的联系和区别
背太阳的牧羊人
模型微调batch机器学习人工智能
这三个参数都是控制训练数据如何被处理的,它们的作用和区别如下:1.max_samples(最大样本数)定义:限制每个数据集最多使用多少条数据。作用:控制总共参与训练的数据量,减少max_samples可以加快训练速度。你的代码示例:max_samples=300#每个数据集最多用300条样本解释:假设你的dataset里包含:identity数据集有10,000条数据alpaca_en_demo数
- scaled_dot_product_attention实现逻辑
凤梧长宜放眼量
人工智能深度学习计算机视觉
torch.nn.functional.scaled_dot_product_attention(query,key,value,attn_mask=None,dropout_p=0.0,is_causal=False,scale=None,enable_gqa=False)->Tensor:参数:query(Tensor)–Querytensor;shape(batch_size,...,hea
- 【eNSP实战】基本ACL实现网络安全
敲键盘的Q
网络
拓扑图要求:PC3不允许访问其他PC和Server1PC2允许访问Server1服务器,不允许其他PC访问各设备IP配置如图所示,这里不做展示AR1接口vlan配置vlanbatch102030#interfaceVlanif10ipaddress192.168.1.254255.255.255.0#interfaceVlanif20ipaddress192.168.2.254255.255.25
- 图神经网络学习笔记—高级小批量处理(专题十四)
AI专题精讲
图神经网络入门到精通人工智能
小批量(mini-batch)的创建对于让深度学习模型的训练扩展到海量数据至关重要。与逐条处理样本不同,小批量将一组样本组合成一个统一的表示形式,从而可以高效地并行处理。在图像或语言领域,这一过程通常通过将每个样本缩放或填充为相同大小的形状来实现,然后将样本在一个额外的维度中分组。该维度的长度等于小批量中分组的样本数量,通常称为batch_size。由于图是能够容纳任意数量节点或边的最通用的数据结
- Batch Normalization理解
zhimengxiang
图像处理人工智能图像处理
BatchNormalization理解BatchNormalization:批归一化我们在图像预处理过程中通常会对图像进行标准化处理,这样能够加速网络的收敛,如下图所示,对于Conv1来说输入的就是满足某一分布的特征矩阵,但对于Conv2而言输入的featuremap就不一定满足某一分布规律了(注意这里所说满足某一分布规律并不是指某一个featuremap的数据要满足分布规律,理论上是指整个训练
- mybatis plus
架构师成长进阶空间
Javajava
//根据ID查询TselectById(Serializableid);//根据entity条件,查询一条记录TselectOne(@Param(Constants.WRAPPER)WrapperqueryWrapper);//查询(根据ID批量查询)ListselectBatchIds(@Param(Constants.COLLECTION)CollectionidList);//根据entit
- Epoch 和 Batch Size的设计 + 模型的早停策略(基于上篇)
一只小铁柱
batch开发语言
一.epoch和batchsize的设计epoch和batchsize是训练神经网络时的两个关键超参数,它们的设计会直接影响模型的训练速度、收敛性和最终性能。1.Epoch的设计epoch表示整个数据集被模型完整遍历一次。设计epoch时需要考虑以下因素:1.1数据集大小小数据集(例如几MB的文本数据):模型容易过拟合,因此epoch不宜过大(例如10-30)。可以使用早停(earlystoppi
- Unity3D 批处理与Draw Call减少(Batching & Reducing Draw Calls)
Thomas_YXQ
Unity3DUnity游戏开发优化性能优化
前言在Unity3D中,批处理(Batching)是优化渲染性能的核心手段,主要通过减少DrawCall数量来降低CPU与GPU之间的通信开销。以下是详细的优化策略与实践方法:对惹,这里有一个游戏开发交流小组,希望大家可以点击进来一起交流一下开发经验呀!一、DrawCall的基本概念DrawCall是CPU向GPU发起的一次渲染指令,每次调用都会触发GPU绘制一个物体。DrawCall过多会导致C
- 一个基于LSTM的字符级文本生成模型的训练+使用(pytorch)
一只小铁柱
lstmpytorch人工智能
一、代码实现1.配置文件config.pyimporttorch#设备配置DEVICE=torch.device('cuda'iftorch.cuda.is_available()else'cpu')#超参数和配置SEQ_LENGTH=100#输入序列长度BATCH_SIZE=64#批大小EMBEDDING_DIM=256#嵌入层维度HIDDEN_SIZE=512#LSTM隐藏层大小NUM_LAY
- Native 崩溃解析工具
JT-999
Androidpython
NDKToolsLibrary一个Python工具库,用于简化AndroidNDK崩溃分析。该库通过封装NDK工具来简化操作,支持解析.dmp文件和logcat崩溃日志,并支持灵活配置参数。支持多平台(Linux、Windows、macOS),并提供Shell和Batch脚本便于使用。功能特性解析.dmp文件:使用ndk-stack工具解析崩溃堆栈解析原生崩溃日志:从logcat输出中提取原生崩溃
- 用友U8销售出库单及序列号查询语句
zikn_92
用友U8SQL语句数据库语句SQLSERVER数据库
SELECTa.cCodeAS销售出库单单号,a.dDateAS日期,a.cMakerAS制单人,a.cHandlerAS审核人,a.dVeriDateAS审核日期,b.cInvCodeAS存货编码,--b.cInvNameAS存货名称,--b.cInvStdAS规格型号,b.iQuantityAS数量,b.cBatchAS批号,c.cInvSNAS序列号FROMrdrecord32a--销售出库
- 用友 U8出入库查询SQL 连接UNION ALL
zikn_92
SQLSERVER用友U8SQL语句数据库语句数据库
--销售出库单查询SELECT'销售出库单'AS单据类型,a.cCodeAS单号,a.dDateAS日期,a.cMakerAS制单人,a.cHandlerAS审核人,a.dVeriDateAS审核日期,b.cInvCodeAS存货编码,b.iQuantityAS数量,b.cBatchAS批号,c.cInvSNAS序列号FROMrdrecord32aJOINrdrecords32bONa.ID=b.
- 深度学习训练中GPU内存管理
@Mr_LiuYang
遇到过的问题内存管理内存溢出outofmemoryGPU内存
文章目录概述常见问题1、设备选择和数据迁移2、显存监控函数3、显存释放函数4、自适应batchsize调节5、梯度累积概述在深度学习模型训练中,主流GPU显存通常为8GB~80GB,内存不足会导致训练中断或BatchSize受限,GPU内存管理是优化性能和避免OutOfMemoryError的关键挑战。本博客简介PyTorch中GPU内存管理的核心函数、用法和实战技巧,帮助开发者高效利用显存资源。
- 深度学习PyTorch之数据加载DataLoader
@Mr_LiuYang
计算机视觉基础深度学习pytorch人工智能
深度学习pytorch之简单方法自定义9类卷积即插即用文章目录数据加载基础架构1、Dataset类详解2、DataLoader核心参数解析3、数据增强数据加载基础架构核心类关系图torch.utils.data├──Dataset(抽象基类)├──DataLoader(数据加载器)├──Sampler(采样策略)├──BatchSampler(批量采样)└──IterableDataset(流式数
- 101.华为企业组网实例:VRRP+MSTP典型组网配置
亦良Cool
华为数通0基础到进阶合集华为网络
VRRP+MSTP典型组网配置VRRP是一种容错协议,它保证当主机的下一跳路由器出现故障时,由另一台路由器来代替出现故障的路由器进行工作,从而保持网络通信的连续性和可靠性。MSTP:多生成树协议,通过生成多个生成树,来解决以太网环路问题。实验拓扑一、VLAN配置SW3配置sysw3uninenvlanbatch10203040interfacee0/0/3portlink-typeaccesspo
- crewai框架出现SSLError
Otto_1027
跑项目实况crewai智能体协作多智能体协作人工智能
使用crewai框架(0.102.0)的时候,控制台突然会出现很多报错信息,但是并不影响程序的实际输出ERROR:opentelemetry.sdk.trace.export:ExceptionwhileexportingSpanbatch.Traceback(mostrecentcalllast):File"G:\ProgramData\anaconda3\envs\crewai_1002\li
- WHALE: TOWARDS GENERALIZABLE AND SCALABLE WORLD Models for Embodied Decision-making 翻译
Doc2X
经典论文翻译人工智能
Doc2X|PDF到Markdown一步搞定只需几秒,Doc2X即可将PDF转换为Markdown,支持批量处理和深度翻译功能。Doc2X|One-StepPDFtoMarkdownConversionInjustseconds,Doc2XconvertsPDFstoMarkdown,withsupportforbatchprocessingandadvancedtranslationfeatur
- Jetson系列: tensorrt-python推理yolov5(一)
weixin_55083979
jetson系列YOLOpytorch深度学习
目录一.onnx模型导出二.TensorRT模型本地序列化三.算法整体Pipline架构四.算法整体Pipline实现一.onnx模型导出在使用tensorrt进行加速之前需要将自己的torch模型转为onnx格式的,这个操作很基础就不赘述了,自己根据自己的任务、部署设备选择合适的batch/infersize/opsetyolov5官方导出onnx脚本Example:```pythonfromp
- Mybatis-Plus 批量插入速度慢的问题优化
自在如风。
mybatismybatis-plusmysqlsqljava
MyBatis-Plus的batchSave接口:实现分页批量插入在实际开发中,批量插入数据是一个常见需求,尤其当数据量较大时,直接使用循环插入效率低下,而MyBatis-Plus提供了强大的批量操作支持。本文将详细讲解如何通过配置和代码实现batchSave接口的分页批量插入功能,优化性能并避免内存溢出。1.背景介绍MyBatis-Plus的BaseMapper默认提供了insert方法,但它只
- github中多个平台共存
jackyrong
github
在个人电脑上,如何分别链接比如oschina,github等库呢,一般教程之列的,默认
ssh链接一个托管的而已,下面讲解如何放两个文件
1) 设置用户名和邮件地址
$ git config --global user.name "xx"
$ git config --global user.email "
[email protected]"
- ip地址与整数的相互转换(javascript)
alxw4616
JavaScript
//IP转成整型
function ip2int(ip){
var num = 0;
ip = ip.split(".");
num = Number(ip[0]) * 256 * 256 * 256 + Number(ip[1]) * 256 * 256 + Number(ip[2]) * 256 + Number(ip[3]);
n
- 读书笔记-jquey+数据库+css
chengxuyuancsdn
htmljqueryoracle
1、grouping ,group by rollup, GROUP BY GROUPING SETS区别
2、$("#totalTable tbody>tr td:nth-child(" + i + ")").css({"width":tdWidth, "margin":"0px", &q
- javaSE javaEE javaME == API下载
Array_06
java
oracle下载各种API文档:
http://www.oracle.com/technetwork/java/embedded/javame/embed-me/documentation/javame-embedded-apis-2181154.html
JavaSE文档:
http://docs.oracle.com/javase/8/docs/api/
JavaEE文档:
ht
- shiro入门学习
cugfy
javaWeb框架
声明本文只适合初学者,本人也是刚接触而已,经过一段时间的研究小有收获,特来分享下希望和大家互相交流学习。
首先配置我们的web.xml代码如下,固定格式,记死就成
<filter>
<filter-name>shiroFilter</filter-name>
&nbs
- Array添加删除方法
357029540
js
刚才做项目前台删除数组的固定下标值时,删除得不是很完整,所以在网上查了下,发现一个不错的方法,也提供给需要的同学。
//给数组添加删除
Array.prototype.del = function(n){
- navigation bar 更改颜色
张亚雄
IO
今天郁闷了一下午,就因为objective-c默认语言是英文,我写的中文全是一些乱七八糟的样子,到不是乱码,但是,前两个自字是粗体,后两个字正常体,这可郁闷死我了,问了问大牛,人家告诉我说更改一下字体就好啦,比如改成黑体,哇塞,茅塞顿开。
翻书看,发现,书上有介绍怎么更改表格中文字字体的,代码如下
 
- unicode转换成中文
adminjun
unicode编码转换
在Java程序中总会出现\u6b22\u8fce\u63d0\u4ea4\u5fae\u535a\u641c\u7d22\u4f7f\u7528\u53cd\u9988\uff0c\u8bf7\u76f4\u63a5这个的字符,这是unicode编码,使用时有时候不会自动转换成中文就需要自己转换了使用下面的方法转换一下即可。
/**
* unicode 转换成 中文
- 一站式 Java Web 框架 firefly
aijuans
Java Web
Firefly是一个高性能一站式Web框架。 涵盖了web开发的主要技术栈。 包含Template engine、IOC、MVC framework、HTTP Server、Common tools、Log、Json parser等模块。
firefly-2.0_07修复了模版压缩对javascript单行注释的影响,并新增了自定义错误页面功能。
更新日志:
增加自定义系统错误页面功能
- 设计模式——单例模式
ayaoxinchao
设计模式
定义
Java中单例模式定义:“一个类有且仅有一个实例,并且自行实例化向整个系统提供。”
分析
从定义中可以看出单例的要点有三个:一是某个类只能有一个实例;二是必须自行创建这个实例;三是必须自行向系统提供这个实例。
&nb
- Javascript 多浏览器兼容性问题及解决方案
BigBird2012
JavaScript
不论是网站应用还是学习js,大家很注重ie与firefox等浏览器的兼容性问题,毕竟这两中浏览器是占了绝大多数。
一、document.formName.item(”itemName”) 问题
问题说明:IE下,可以使用 document.formName.item(”itemName”) 或 document.formName.elements ["elementName&quo
- JUnit-4.11使用报java.lang.NoClassDefFoundError: org/hamcrest/SelfDescribing错误
bijian1013
junit4.11单元测试
下载了最新的JUnit版本,是4.11,结果尝试使用发现总是报java.lang.NoClassDefFoundError: org/hamcrest/SelfDescribing这样的错误,上网查了一下,一般的解决方案是,换一个低一点的版本就好了。还有人说,是缺少hamcrest的包。去官网看了一下,如下发现:
- [Zookeeper学习笔记之二]Zookeeper部署脚本
bit1129
zookeeper
Zookeeper伪分布式安装脚本(此脚本在一台机器上创建Zookeeper三个进程,即创建具有三个节点的Zookeeper集群。这个脚本和zookeeper的tar包放在同一个目录下,脚本中指定的名字是zookeeper的3.4.6版本,需要根据实际情况修改):
#!/bin/bash
#!!!Change the name!!!
#The zookeepe
- 【Spark八十】Spark RDD API二
bit1129
spark
coGroup
package spark.examples.rddapi
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.SparkContext._
object CoGroupTest_05 {
def main(args: Array[String]) {
v
- Linux中编译apache服务器modules文件夹缺少模块(.so)的问题
ronin47
modules
在modules目录中只有httpd.exp,那些so文件呢?
我尝试在fedora core 3中安装apache 2. 当我解压了apache 2.0.54后使用configure工具并且加入了 --enable-so 或者 --enable-modules=so (两个我都试过了)
去make并且make install了。我希望在/apache2/modules/目录里有各种模块,
- Java基础-克隆
BrokenDreams
java基础
Java中怎么拷贝一个对象呢?可以通过调用这个对象类型的构造器构造一个新对象,然后将要拷贝对象的属性设置到新对象里面。Java中也有另一种不通过构造器来拷贝对象的方式,这种方式称为
克隆。
Java提供了java.lang.
- 读《研磨设计模式》-代码笔记-适配器模式-Adapter
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 适配器模式解决的主要问题是,现有的方法接口与客户要求的方法接口不一致
* 可以这样想,我们要写这样一个类(Adapter):
* 1.这个类要符合客户的要求 ---> 那显然要
- HDR图像PS教程集锦&心得
cherishLC
PS
HDR是指高动态范围的图像,主要原理为提高图像的局部对比度。
软件有photomatix和nik hdr efex。
一、教程
叶明在知乎上的回答:
http://www.zhihu.com/question/27418267/answer/37317792
大意是修完后直方图最好是等值直方图,方法是HDR软件调一遍,再结合不透明度和蒙版细调。
二、心得
1、去除阴影部分的
- maven-3.3.3 mvn archetype 列表
crabdave
ArcheType
maven-3.3.3 mvn archetype 列表
可以参考最新的:http://repo1.maven.org/maven2/archetype-catalog.xml
[INFO] Scanning for projects...
[INFO]
- linux shell 中文件编码查看及转换方法
daizj
shell中文乱码vim文件编码
一、查看文件编码。
在打开文件的时候输入:set fileencoding
即可显示文件编码格式。
二、文件编码转换
1、在Vim中直接进行转换文件编码,比如将一个文件转换成utf-8格式
&
- MySQL--binlog日志恢复数据
dcj3sjt126com
binlog
恢复数据的重要命令如下 mysql> flush logs; 默认的日志是mysql-bin.000001,现在刷新了重新开启一个就多了一个mysql-bin.000002
- 数据库中数据表数据迁移方法
dcj3sjt126com
sql
刚开始想想好像挺麻烦的,后来找到一种方法了,就SQL中的 INSERT 语句,不过内容是现从另外的表中查出来的,其实就是 MySQL中INSERT INTO SELECT的使用
下面看看如何使用
语法:MySQL中INSERT INTO SELECT的使用
1. 语法介绍
有三张表a、b、c,现在需要从表b
- Java反转字符串
dyy_gusi
java反转字符串
前几天看见一篇文章,说使用Java能用几种方式反转一个字符串。首先要明白什么叫反转字符串,就是将一个字符串到过来啦,比如"倒过来念的是小狗"反转过来就是”狗小是的念来过倒“。接下来就把自己能想到的所有方式记录下来了。
1、第一个念头就是直接使用String类的反转方法,对不起,这样是不行的,因为Stri
- UI设计中我们为什么需要设计动效
gcq511120594
UIlinux
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用
- JBOSS服务部署端口冲突问题
HogwartsRow
java应用服务器jbossserverEJB3
服务端口冲突问题的解决方法,一般修改如下三个文件中的部分端口就可以了。
1、jboss5/server/default/conf/bindingservice.beans/META-INF/bindings-jboss-beans.xml
2、./server/default/deploy/jbossweb.sar/server.xml
3、.
- 第三章 Redis/SSDB+Twemproxy安装与使用
jinnianshilongnian
ssdbreidstwemproxy
目前对于互联网公司不使用Redis的很少,Redis不仅仅可以作为key-value缓存,而且提供了丰富的数据结果如set、list、map等,可以实现很多复杂的功能;但是Redis本身主要用作内存缓存,不适合做持久化存储,因此目前有如SSDB、ARDB等,还有如京东的JIMDB,它们都支持Redis协议,可以支持Redis客户端直接访问;而这些持久化存储大多数使用了如LevelDB、RocksD
- ZooKeeper原理及使用
liyonghui160com
ZooKeeper是Hadoop Ecosystem中非常重要的组件,它的主要功能是为分布式系统提供一致性协调(Coordination)服务,与之对应的Google的类似服务叫Chubby。今天这篇文章分为三个部分来介绍ZooKeeper,第一部分介绍ZooKeeper的基本原理,第二部分介绍ZooKeeper
- 程序员解决问题的60个策略
pda158
框架工作单元测试
根本的指导方针
1. 首先写代码的时候最好不要有缺陷。最好的修复方法就是让 bug 胎死腹中。
良好的单元测试
强制数据库约束
使用输入验证框架
避免未实现的“else”条件
在应用到主程序之前知道如何在孤立的情况下使用
日志
2. print 语句。往往额外输出个一两行将有助于隔离问题。
3. 切换至详细的日志记录。详细的日
- Create the Google Play Account
sillycat
Google
Create the Google Play Account
Having a Google account, pay 25$, then you get your google developer account.
References:
http://developer.android.com/distribute/googleplay/start.html
https://p
- JSP三大指令
vikingwei
jsp
JSP三大指令
一个jsp页面中,可以有0~N个指令的定义!
1. page --> 最复杂:<%@page language="java" info="xxx"...%>
* pageEncoding和contentType:
> pageEncoding:它