apply函数

 apply函数是pandas里面所有函数中自由度最高的函数。该函数如下:

    DataFrame.apply(func, axis=0, broadcast=False, raw=False, reduce=None, args=(), **kwds)

    该函数最有用的是第一个参数,这个参数是函数,相当于C/C++的函数指针。

    这个函数需要自己实现,函数的传入参数根据axis来定,比如axis = 1,就会把一行数据作为Series的数据
结构传入给自己实现的函数中,我们在函数中实现对Series不同属性之间的计算,返回一个结果,则apply函数
会自动遍历每一行DataFrame的数据,最后将所有结果组合成一个Series数据结构并返回。

    我们想要将表格中的PublishedTime和ReceivedTime属性之间的时间差的数据得到,这样可以使用下面的函数来实现

import pandas as pd
import datetime   #用来计算日期差的包

def dataInterval(data1,data2):
    d1 = datetime.datetime.strptime(data1, '%Y-%m-%d')
    d2 = datetime.datetime.strptime(data2, '%Y-%m-%d')
    delta = d1 - d2
    return delta.days

def getInterval(arrLike):  #用来计算日期间隔天数的调用的函数
    PublishedTime = arrLike['PublishedTime']
    ReceivedTime = arrLike['ReceivedTime']
#    print(PublishedTime.strip(),ReceivedTime.strip())
    days = dataInterval(PublishedTime.strip(),ReceivedTime.strip())  #注意去掉两端空白
    return days

if __name__ == '__main__':    
    fileName = "NS_new.xls";
    df = pd.read_excel(fileName) 
    df['TimeInterval'] = df.apply(getInterval , axis = 1)

    有时候,我们想给自己实现的函数传递参数,就可以用的apply函数的args和*kwds参数,
比如同样的时间差函数,我希望自己传递时间差的标签,这样没次标签更改就不用修改自己实现 的函数了,实现代码如下:

import pandas as pd
import datetime   #用来计算日期差的包

def dataInterval(data1,data2):
    d1 = datetime.datetime.strptime(data1, '%Y-%m-%d')
    d2 = datetime.datetime.strptime(data2, '%Y-%m-%d')
    delta = d1 - d2
    return delta.days

def getInterval_new(arrLike,before,after):  #用来计算日期间隔天数的调用的函数
    before = arrLike[before]
    after = arrLike[after]
#    print(PublishedTime.strip(),ReceivedTime.strip())
    days = dataInterval(after.strip(),before.strip())  #注意去掉两端空白
    return days


if __name__ == '__main__':    
    fileName = "NS_new.xls";
    df = pd.read_excel(fileName) 
    df['TimeInterval'] = df.apply(getInterval_new , 
      axis = 1, args = ('ReceivedTime','PublishedTime'))    #调用方式一
    #下面的调用方式等价于上面的调用方式
    df['TimeInterval'] = df.apply(getInterval_new , 
      axis = 1, **{'before':'ReceivedTime','after':'PublishedTime'})  #调用方式二
    #下面的调用方式等价于上面的调用方式
    df['TimeInterval'] = df.apply(getInterval_new , 
      axis = 1, before='ReceivedTime',after='PublishedTime')  #调用方式三

    修改后的getInterval_new函数多了两个参数,这样我们在使用apply函数的时候要自己
传递参数,代码中显示的三种传递方式都行



作者:UlissesJr
链接:https://www.jianshu.com/p/84bed15e9e6b
来源:简书

你可能感兴趣的:(大数据分析综合实验,python)