对于resnet,想必大家已经非常熟悉了。而近日,由南开大学、牛津大学和加州大学默塞德分校的研究人员共同提出的Res2Net,可以和现有其他优秀模块轻松整合:在不增加计算负载量的情况下,在ImageNet、CIFAR-100等数据集上的测试性能超过了ResNet。
在文中,研究人员在一个单个残差块内构造分层的残差类连接,为CNN提出了一种新的构建模块,即Res2Net——以更细粒度(granular level)表示多尺度特征,并增加每个网络层的感受野(receptive fields)范围。res2net模块如下右图所示Res2Net模块可以融合到最先进的backbone CNN模型中,例如ResNet,ResNeXt和DLA。此次实验便是基于ResNet模型,并使用mnist数据集。
实验代码主要参考自https://github.com/rasbt/deeplearning-models和https://github.com/4uiiurz1/pytorch-res2net
imports
import os
import time
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision import transforms
import matplotlib.pyplot as plt
from PIL import Image
if torch.cuda.is_available():
torch.backends.cudnn.deterministic = True
Model Settings
##########################
### SETTINGS
##########################
# Hyperparameters
RANDOM_SEED = 1
LEARNING_RATE = 0.0001
BATCH_SIZE = 128
NUM_EPOCHS = 20
# Architecture
NUM_FEATURES = 28*28
NUM_CLASSES = 10
# Other
DEVICE = "cuda:0"
GRAYSCALE = True
MNIST Dataset
##########################
### MNIST DATASET
##########################
# Note transforms.ToTensor() scales input images
# to 0-1 range
train_dataset = datasets.MNIST(root='data',
train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = datasets.MNIST(root='data',
train=False,
transform=transforms.ToTensor())
train_loader = DataLoader(dataset=train_dataset,
batch_size=BATCH_SIZE,
shuffle=True)
test_loader = DataLoader(dataset=test_dataset,
batch_size=BATCH_SIZE,
shuffle=False)
# Checking the dataset
for images, labels in train_loader:
print('Image batch dimensions:', images.shape)
print('Image label dimensions:', labels.shape)
break
device = torch.device(DEVICE)
torch.manual_seed(0)
for epoch in range(2):
for batch_idx, (x, y) in enumerate(train_loader):
print('Epoch:', epoch+1, end='')
print(' | Batch index:', batch_idx, end='')
print(' | Batch size:', y.size()[0])
x = x.to(device)
y = y.to(device)
break
##########################
### MODEL
##########################
def conv3x3(in_planes, out_planes, stride=1, groups=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, groups=groups, bias=False)
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class SEModule(nn.Module):
def __init__(self, channels, reduction=16):
super(SEModule, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc1 = nn.Conv2d(channels, channels // reduction, kernel_size=1, padding=0)
self.relu = nn.ReLU(inplace=True)
self.fc2 = nn.Conv2d(channels // reduction, channels, kernel_size=1, padding=0)
self.sigmoid = nn.Sigmoid()
def forward(self, input):
x = self.avg_pool(input)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.sigmoid(x)
return input * x
class Res2NetBottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, downsample=None, stride=1, scales=4, groups=1, se=True, norm_layer=None):
super(Res2NetBottleneck, self).__init__()
if planes % scales != 0:
raise ValueError('Planes must be divisible by scales')
if norm_layer is None:
norm_layer = nn.BatchNorm2d
bottleneck_planes = groups * planes
self.conv1 = conv1x1(inplanes, bottleneck_planes, stride)
self.bn1 = norm_layer(bottleneck_planes)
self.conv2 = nn.ModuleList([conv3x3(bottleneck_planes // scales, bottleneck_planes // scales, groups=groups) for _ in range(scales-1)])
self.bn2 = nn.ModuleList([norm_layer(bottleneck_planes // scales) for _ in range(scales-1)])
self.conv3 = conv1x1(bottleneck_planes, planes * self.expansion)
self.bn3 = norm_layer(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.se = SEModule(planes * self.expansion) if se else None
self.downsample = downsample
self.stride = stride
self.scales = scales
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
xs = torch.chunk(out, self.scales, 1)
ys = []
for s in range(self.scales):
if s == 0:
ys.append(xs[s])
elif s == 1:
ys.append(self.relu(self.bn2[s-1](self.conv2[s-1](xs[s]))))
else:
ys.append(self.relu(self.bn2[s-1](self.conv2[s-1](xs[s] + ys[-1]))))
out = torch.cat(ys, 1)
out = self.conv3(out)
out = self.bn3(out)
if self.se is not None:
out = self.se(out)
if self.downsample is not None:
identity = self.downsample(identity)
out += identity
out = self.relu(out)
return out
class Res2Net(nn.Module):
def __init__(self, layers, num_classes, zero_init_residual=False,
groups=1, width=16, scales=4, se=False, norm_layer=None): #Width refers to the number of channels in a layer
super(Res2Net, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
planes = [int(width * scales * 2 ** i) for i in range(4)]
self.inplanes = planes[0]
self.conv1 = nn.Conv2d(1, planes[0], kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = norm_layer(planes[0])
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(Res2NetBottleneck, planes[0], layers[0], scales=scales, groups=groups, se=se, norm_layer=norm_layer)
self.layer2 = self._make_layer(Res2NetBottleneck, planes[1], layers[1], stride=2, scales=scales, groups=groups, se=se, norm_layer=norm_layer)
self.layer3 = self._make_layer(Res2NetBottleneck, planes[2], layers[2], stride=2, scales=scales, groups=groups, se=se, norm_layer=norm_layer)
self.layer4 = self._make_layer(Res2NetBottleneck, planes[3], layers[3], stride=2, scales=scales, groups=groups, se=se, norm_layer=norm_layer)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(planes[3] * Res2NetBottleneck.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
# Zero-initialize the last BN in each residual branch,
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
if zero_init_residual:
for m in self.modules():
if isinstance(m, Res2NetBottleneck):
nn.init.constant_(m.bn3.weight, 0)
def _make_layer(self, block, planes, blocks, stride=1, scales=4, groups=1, se=False, norm_layer=None):
if norm_layer is None:
norm_layer = nn.BatchNorm2d
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
norm_layer(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, downsample, stride=stride, scales=scales, groups=groups, se=se, norm_layer=norm_layer))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes, scales=scales, groups=groups, se=se, norm_layer=norm_layer))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
logits = self.fc(x)
probas = F.softmax(logits, dim=1)
return logits, probas
def res2net50(num_classes):
"""Constructs a Res2Net-50 model.
"""
model = Res2Net(layers=[3, 4, 6, 3],
num_classes=NUM_CLASSES,)
return model
Training
def compute_accuracy(model, data_loader, device):
correct_pred, num_examples = 0, 0
for i, (features, targets) in enumerate(data_loader):
features = features.to(device)
targets = targets.to(device)
logits, probas = model(features)
_, predicted_labels = torch.max(probas, 1)
num_examples += targets.size(0)
correct_pred += (predicted_labels == targets).sum()
return correct_pred.float()/num_examples * 100
start_time = time.time()
for epoch in range(NUM_EPOCHS):
model.train()
for batch_idx, (features, targets) in enumerate(train_loader):
features = features.to(DEVICE)
targets = targets.to(DEVICE)
### FORWARD AND BACK PROP
logits, probas = model(features)
cost = F.cross_entropy(logits, targets)
optimizer.zero_grad()
cost.backward()
### UPDATE MODEL PARAMETERS
optimizer.step()
### LOGGING
if not batch_idx % 50:
print ('Epoch: %03d/%03d | Batch %04d/%04d | Cost: %.4f'
%(epoch+1, NUM_EPOCHS, batch_idx,
len(train_loader), cost))
model.eval()
with torch.set_grad_enabled(False): # save memory during inference
print('Epoch: %03d/%03d | Train: %.3f%%' % (
epoch+1, NUM_EPOCHS,
compute_accuracy(model, train_loader, device=DEVICE)))
print('Time elapsed: %.2f min' % ((time.time() - start_time)/60))
print('Total Training Time: %.2f min' % ((time.time() - start_time)/60))
Evaluation
with torch.set_grad_enabled(False): # save memory during inference
print('Test accuracy: %.2f%%' % (compute_accuracy(model, test_loader, device=DEVICE)))
for batch_idx, (features, targets) in enumerate(test_loader):
features = features
targets = targets
break
nhwc_img = np.transpose(features[0], axes=(1, 2, 0))
nhw_img = np.squeeze(nhwc_img.numpy(), axis=2)
plt.imshow(nhw_img, cmap='Greys');
model.eval()
logits, probas = model(features.to(device)[0, None])
print('Probability 7 %.2f%%' % (probas[0][7]*100))