目录
一、知识点汇总
二、知识点详解
2.1 JVM 的主要组成部分及其作用
2.2 JVM内存模型
2.3 堆与栈的区别
2.4 JVM 加载 class 文件的原理机制
2.5 类的生命周期
2.6 Java 对象结构
2.7 Java 对象创建过程
2.8 对象分配规则与逃逸分析
2.9 Minnor GC 与 Full GC
2.10 垃圾收集算法
2.11 垃圾回收器
2.12 如何判断对象可以被回收?
2.13 如何选择垃圾收集器?
2.14 Stop The World、OopMap、safepoint
2.15 指针碰撞
2.16 空闲列表
2.17 TLAB
2.18 虚拟机为什么使用元空间替换了永久代
2.19 调优命令
2.20 调优参数
2.21 调优工具
其中内存模型,类加载机制,GC是重点方面。性能调优部分更偏向应用,重点突出实践能力。编译器优化和执行模式部分偏向于理论基础,重点掌握知识点。
首先通过编译器把 Java源代码转换成字节码,Class loader(类装载)再把字节码加载到内存中,将其放在运行时数据区的方法区内,而字节码文件只是 JVM 的一套指令集规范,并不能直接交给底层操作系统去执行,因此需要特定的命令解析器执行引擎(Execution Engine),将字节码翻译成底层系统指令,再交由 CPU 去执行,而这个过程中需要调用其他语言的本地库接口(Native Interface)来实现整个程序的功能。
栈:又称方法栈,线程私有的,线程执行方法是都会创建一个栈阵,用来存储局部变量表,操作栈,动态链接,方法出口等信息.调用方法时执行入栈,方法返回式执行出栈.。
本地方法栈:与栈类似,也是用来保存执行方法的信息.执行Java方法是使用栈,执行Native方法时使用本地方法栈。
程序计数器:保存着当前线程执行的字节码位置,每个线程工作时都有独立的计数器,只为执行Java方法服务,执行 Native 方法时,程序计数器为空。
堆:JVM内存管理最大的一块,对被线程共享,目的是存放对象的实例,几乎所欲的对象实例都会放在这里,当堆没有可用空间时,会抛出OOM异常.根据对象的存活周期不同,JVM把对象进行分代管理,由垃圾回收器进行垃圾的回收管理。
方法区:又称非堆区,用于存储已被虚拟机加载的类信息,常量,静态变量,即时编译器优化后的代码等数据。1.7的永久代和1.8的元空间都是方法区的一种实现。
栈是运行时单位,代表着逻辑,内含基本数据类型和堆中对象引用,所在区域连续,没有碎片;堆
是存储单位,代表着数据,可被多个栈共享(包括成员中基本数据类型、引用和引用对象),所在
区域不连续,会有碎片。
功能不同
栈内存用来存储局部变量和方法调用,而堆内存用来存储Java中的对象。无论是成员变量,局部变
量,还是类变量,它们指向的对象都存储在堆内存中。
共享性不同
栈内存是线程私有的。 堆内存是所有线程共有的。
异常错误不同
如果栈内存或者堆内存不足都会抛出异常。 栈空间不足:java.lang.StackOverFlowError。 堆空间
不足:java.lang.OutOfMemoryError。
空间大小
栈的空间大小远远小于堆的。
JVM中类的装载是由类加载器(ClassLoader)和它的子类来实现的,Java中的类加载器是一个重要的Java运行时系统组件,它负责在运行时查找和装入类文件中的类。 由于Java的跨平台性,经过编译的Java源程序并不是一个可执行程序,而是一个或多个类文件。当Java程序需要使用某个类时,JVM会确保这个类已经被加载、连接(验证、准备和解析)和初始化。类的加载是指把类的.class文件中的数据读入到内存中,通常是创建一个字节数组读入.class文件,然后产生与所加载类对应的Class对象。加载完成后,Class对象还不完整,所以此时的类还不可用。当类被加载后就进入连接阶段,这一阶段包括验证、准备(为静态变量分配内存并设置默认的初始值)和解析(将符号引用替换为直接引用)三个步骤。最后JVM对类进行初始化,包括:1)如果类存在直接的父类并且这个类还没有被初始化,那么就先初始化父类;2)如果类中存在初始化语句,就依次执行这些初始化语句。
从Java 2(JDK 1.2)开始,类加载过程采取了父亲委托机制(PDM)。PDM更好的保证了
Java平台的安全性,在该机制中,JVM自带的Bootstrap是根加载器,其他的加载器都有且仅有一个父类加载器。类的加载首先请求父类加载器加载,父类加载器无能为力时才由其子类加载器自行加载。JVM不会向Java程序提供对Bootstrap的引用。
类加载器包括:
加载:通过类的完全限定名,查找此类字节码文件,利用字节码文件创建Class对象.。
验证:确保Class文件符合当前虚拟机的要求,不会危害到虚拟机自身安全。
准备:为static修饰的类变量分配内存,并设置初始值(0或null),不包含final修饰的静态变量,因为final变量在编译时分配。
解析:将常量池中的符号引用替换为直接引用的过程.直接引用为直接指向目标的指针或者相对偏移量等。
初始化:主要完成静态块执行以及静态变量的赋值。先初始化父类,再初始化当前类。只有对类主动使用时才会初始化。触发条件包括:
使用:new出对象程序中使用。
卸载:执行垃圾回收,Java自带的加载器加载的类,在虚拟机的生命周期中是不会被卸载的,只有用户自定义的加载器加载的类才可以被卸载。
其中验证,准备,解析合称链接。
Java 对象由三个部分组成:对象头、实例数据、对齐填充。
对象头:由两部分组成,Mark Word中的内容会随着锁标志位而发生变化,所以只说存储结构就好了。
第一部分存储对象自身的运行时数据,也被称为Mark Word,也就是用于轻量级锁和偏向锁的关键点。具体的内容包含对象的hashcode、分代年龄、轻量级锁指针、重量级锁指针、GC标记、偏向
锁线程ID(一般占32/64 bit)、偏向锁时间戳。
第二部分是指针类型:指向对象的类元数据类型(即对象代表哪个类)。如果是数组对象,则对象头中还有一部分用来记录数组长度。
实例数据:用来存储对象真正的有效信息(包括父类继承下来的和自己定义的)。
对齐填充:JVM要求对象起始地址必须是8字节的整数倍(8字节对齐)。
对象分配规则:
逃逸分析(Escape Analysis):
逃逸分析的好处:
总结:对象不一定分配在堆中,JVM通过逃逸分析,那些逃不出方法的对象会在栈上分配。
除直接调用System.gc外,触发Full GC执行的情况有如下四种:
旧生代空间只有在新生代对象转入及创建为大对象、大数组时才会出现不足的现象,当执行Full GC后空间仍然不足,则抛出如下错误: java.lang.OutOfMemoryError: Java heap space 为避免以上两种状况引起的FullGC,调优时应尽量做到让对象在Minor GC阶段被回收、让对象在新生代多存活一段时间及不要创建过大的对象及数组。
Permanet Generation 中存放的为一些 class 的信息等,当系统中要加载的类、反射的类和调用的方法较多时,Permanet Generation 可能会被占满,在未配置为采用 CMS GC 的情况下会执行Full GC。如果经过 Full GC 仍然回收不了,那么JVM会抛出如下错误信息: java.lang.OutOfMemoryError: PermGen space 为避免 Perm Gen 占满造成 Full GC 现象,可
采用的方法为增大 Perm Gen 空间或转为使用 CMS GC。
对于采用CMS进行旧生代GC的程序而言,尤其要注意GC日志中是否有promotion failed和concurrent mode failure两种状况,当这两种状况出现时可能会触发Full GC。 promotionfailed是在进行Minor GC时,survivor space放不下、对象只能放入旧生代,而此时旧生代也放不下造成的;concurrent mode failure是在执行CMS GC的过程中同时有对象要放入旧生代,而此时旧生代空间不足造成的。 应对措施为:增大survivorspace、旧生代空间或调低触发并发GC的比率,但在JDK 5.0+、6.0+的版本中有可能会由于JDK的bug29导致CMS在remark完毕后很久才触发sweeping动作。对于这种状况,可通过设置 -XX:CMSMaxAbortablePrecleanTime=5(单位为ms)来避免。
这是一个较为复杂的触发情况,Hotspot为了避免由于新生代对象晋升到旧生代导致旧生代空间不足的现象,在进行Minor GC时,做了一个判断,如果之前统计所得到的Minor GC晋升到旧生代的平均大小大于旧生代的剩余空间,那么就直接触发Full GC。 例如程序第一次触发MinorGC后,有6MB的对象晋升到旧生代,那么当下一次Minor GC发生时,首先检查旧生代的剩余空间是否大于6MB,如果小于6MB,则执行Full GC。 当新生代采用PSGC时,方式稍有不同,PS GC是在Minor GC后也会检查,例如上面的例子中第一次Minor GC后,PS GC会检查此时旧生代的剩余空间是否大于6MB,如小于,则触发对旧生代的回收。 除了以上4种状况外,对于使用RMI来进行RPC或管理的Sun JDK应用而言,默认情况下会一小时执行一次Full GC。可通过在启动时通过- java -Dsun.rmi.dgc.client.gcInterval=3600000来设置Full GC执行的间隔时间或通过 -XX:+
DisableExplicitGC 来禁止RMI调用System.gc。
GC 最基础的算法有三种: 标记--清除算法、复制算法、标记--压缩算法,我们常用的垃圾回收器一般都采用分代收集算法。
标记--清除算法:“标记-清除”(Mark-Sweep)算法,如它的名字一样,算法分为“标记”和“清
除”两个阶段:首先标记出所有需要回收的对象,在标记完成后统一回收掉所有被标记的对象。
复制算法:“复制”(Copying)的收集算法,它将可用内存按容量划分为大小相等的两块,每次
只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后
再把已使用过的内存空间一次清理掉。
标记--压缩算法:标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象进行
清理,而是让所有存活的对象都向一端移动,然后直接清理掉端边界以外的内存。
分代收集算法:“分代收集”(Generational Collection)算法,把Java堆分为新生代和老年代,
这样就可以根据各个年代的特点采用最适当的收集算法。
如果说垃圾收集算法是内存回收的方法论,那么垃圾收集器就是内存回收的具体实现。下图展示了
7种作用于不同分代的收集器,其中用于回收新生代的收集器包括Serial、PraNew、Parallel、Scavenge,回收老年代的收集器包括Serial Old、Parallel Old、CMS,还有用于回收整个Java堆的G1收集器。不同收集器之间的连线表示它们可以搭配使用。
新生代收集器
老年代收集器
整堆收集器
判断对象是否存活一般有两种方式:
GC Roots根节点:线程的本地变量、静态变量、本地方法栈的变量等等。
总结:从上面这些出发点来看,我们平常的 Web 服务器,都是对响应性要求非常高的。选择性其实就集中在 CMS 、 G1 、 ZGC 上。而对于某些定时任务,使用并行收集器,是一个比较好的选择。
Stop The World:
进行垃圾回收的过程中,会涉及对象的移动。为了保证对象引用更新的正确性,必须暂停所有的用
户线程,像这样的停顿,虚拟机设计者形象描述为「Stop The World」。也简称为STW。
OopMap:
在HotSpot中,有个数据结构(映射表)称为「OopMap」。一旦类加载动作完成的时候,HotSpot就会把对象内什么偏移量上是什么类型的数据计算出来,记录到OopMap。在即时编译过程中,也会在「特定的位置」生成 OopMap,记录下栈上和寄存器里哪些位置是引用。
safepoint:
循环的末尾(非 counted 循环)、方法临返回前 / 调用方法的call指令后、可能抛异常的位置,这些特定的位置叫做安全点「safepoint」。
总结:程序执行时并非在代码指令流的任意位置都能够停顿下来开始垃圾收集,而是必须是执行到安全点才能够暂停。
一般情况下,JVM的对象都放在堆内存中(发生逃逸分析除外)。当类加载检查通过后,Java虚拟
机开始为新生对象分配内存。如果Java堆中内存是绝对规整的,所有被使用过的的内存都被放到一
边,空闲的内存放到另外一边,中间放着一个指针作为分界点的指示器,所分配内存仅仅是把那个
指针向空闲空间方向挪动一段与对象大小相等的实例,这种分配方式就是指针碰撞。
如果Java堆内存中的内存并不是规整的,已被使用的内存和空闲的内存相互交错在一起,不可以进行指针碰撞啦,虚拟机必须维护一个列表,记录哪些内存是可用的,在分配的时候从列表找到一块大的空间分配给对象实例,并更新列表上的记录,这种分配方式就是空闲列表。
可以把内存分配的动作按照线程划分在不同的空间之中进行,每个线程在Java堆中预先分配一小块
内存,这就是TLAB(Thread Local Allocation Buffer,本地线程分配缓存) 。
虚拟机通过 -XX:UseTLAB 设定。
什么是永久代?它和方法区有什么关系呢?
如果在HotSpot虚拟机上开发、部署,很多程序员都把方法区称作永久代。可以说方法区是规范,永久代是Hotspot针对该规范进行的实现。在Java7及以前的版本,方法区都是永久代实现的。
什么是元空间?它和方法区有什么关系呢?
对于Java8,HotSpots取消了永久代,取而代之的是元空间(Metaspace)。换句话说,就是方法区还是在的,只是实现变了,从永久代变为元空间了。
为什么使用元空间替换了永久代?
对于「永久代」,如果动态生成很多class的话,就很可能出现「java.lang.OutOfMemoryError:
PermGen space错误」,因为永久代空间配置有限嘛。最典型的场景是,在web开发比较多jsp页
面的时候。
总结:表面上看是为了避免OOM异常。因为通常使用PermSize和MaxPermSize设置永久代的大小就决定了永久代的上限,但是不是总能知道应该设置为多大合适,,如果使用默认值很容易遇到
OOM错误。当使用元空间时,可以加载多少类的元数据就不再由MaxPermSize控制,而由系统
的实际可用空间来控制啦。
Sun JDK监控和故障处理命令有jps jstat jmap jhat jstack jinfo。
堆栈内存相关
垃圾收集器相关
辅助信息相关
jdk自带监控工具
第三方工具