基本使用注意事项

1.put和post都是提交数据,两者的区别:put必须带ID如果不带ID直接报错,如果ID已存在则是更新,ID不存在则是新增,POST可以不带ID,不带ID则是新增。如果带了ID,ID已存在则是修改,ID不存在则是新增

2.get是查询数据,在返回的结果中有_seq_no,并发控制字段,每次更新都会+1,用来做乐观锁;_primary_term:同上,主分片重新分配,每次重启都会分配新的数值,怎么使用呢,就是在url后面拼接上着两个参数,例?if_seq_no=1&id_primary_term=1 如果这两个数值都正确那么就会进行更新,不正确就不会更新

3.更新操作post带_update,如果和原来的数据一模一样这样就不进行更新操作,seq_no,version_id都不会改变,而且请求体中要在更新的内容外面加一层"doc": {};put和post更新都不会检查元素直接更新

4.批量操作post请求 url后面添加_bulk 请求体格式:

{action:{metadata}}

{requestbody};action指的是操作,metadata是指的是元数据(_index,_id等)requestbody是数据体;批量操作没有事物的说法,每个操作都是独立的

4.查询,可以在url中直接添加要查询的参数,也可将要查询的条件写到请求体中

get bank/_search

{

"query":{

"match_all": {}

},

"sort":[

{

"account_number": "asc"

},

{

"balance": "desc"

}

],

"from": 10,

"size": 10

"_source":["balance","firstname"] ###指定要查询的列

}

根据某个字段进行查询,支持模糊查询

"query": {

    "match": {

      "address": "kings"

    }

  }

进行短语匹配,把后面的当做一个短语一块匹配

GET /bank/_search

{

  "query": {

    "match_phrase": {

      "address": "mill road"

    }

  }

}

多字段匹配,类似于数据库中or,多字段中也是进行分词的

GET /bank/_search

{

  "query": {

    "multi_match": {

      "query": "mill",

      "fields": ["address","city"]

    }

  }

}

联合查询,这里面的should之后影响搜索的得分,并不会影响结果。而must_not不会影响得分,这个相当于一个过滤器,只会对结果有影响

GET /bank/_search

{

  "query": {

    "bool": {

      "must": [

        {"match": {

          "gender": "M"

        }},

        {

          "match": {

            "address": "mill"

          }

        }

      ],

      "must_not": [

        {"match": {

          "lastname": "wa"

        }}

      ],

      "should": [

        {"match": {

          "address": "1"

        }}

      ]

    }

  }

}

找出某个字段在某个范围内的记录,这个结果是有得分的,当把must换成filter时是没有得分的

GET bank/_search

{

  "query": {

    "bool": {

      "must": [

        {

          "range": {

            "age": {

              "gte": 10,

              "lte": 20

            }

          }

        }

      ]

    }

  }

}

如果是精准的值的话,就用term(像年龄等)如果是文本的全文搜索的话用match,某个字段.keywords也是精确匹配的

聚合查询,即对结果进行一些分析比如求平均值,获取数据分布等

格式:

  "aggs": {

    "agg_name": {

      "agg_类型(term:获取数据的分布,avg平均值等)": {

        "field": "age",

        "size": 100

      }

}

可以agg可以多个同级,也可以作为下属,将结果作为两一个agg的入参

例:获取每个年龄的人数和工资的平均值

GET bank/_search

{

  "query": {

    "match_all": {}

  },

  "aggs": {

    "ageAgg": {

      "terms": {

        "field": "age",

        "size": 100

      },

      "aggs": {

        "ageAvg": {

          "avg": {

            "field": "balance"

          }

        }

      }

    }

  }

}

映射:指的是索引中的数据的类型

GET bank/_mapping

创建一个索引的映射(keyword只能精确匹配,text可以全局索引,integer只能用term查询)

PUT /my_index

{

  "mappings": {

    "properties": {

      "age":{"type": "integer"},

      "email":{"type": "keyword"},

      "name":{"type": "text"}

    }

  }

}

给一个index添加一个映射,index如果为false则是不让根据这个字段进行检索

PUT /my_index/_mapping

{

  "properties": {

      "employee_id":{

        "type": "integer",

        "index": false

      }

    }

}

想要修改映射,只能进行数据迁移,先创建一个新的索引,然后进行数据迁移

数据迁移(type在his中有):

POST _reindex

{

  "source": {

    "index": "bank",

    "type": "account"

  },

  "dest": {

    "index": "newbank"

  }

}


springboot 整合 elasticsearch client

引入依赖

org.elasticsearch.client

elasticsearch-rest-high-level-client

7.4.2

这里要记得修改elasticsearch的依赖,因为这个依赖springboot本身就有这个依赖,必须要替换成和客户端相同的才行

org.springframework.boot

spring-boot-parent

2.1.8.RELEASE

7.4.2

进行相关的配置

package com.yuchen.mailsearch.config;

import org.apache.http.HttpHost;

import org.elasticsearch.client.RequestOptions;

import org.elasticsearch.client.RestClient;

import org.elasticsearch.client.RestHighLevelClient;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

@Configuration

public class MailElasticsearchConfig {

public static final RequestOptionsCOMMON_OPTIONS;

static {

RequestOptions.Builder builder = RequestOptions.DEFAULT.toBuilder();

//        builder.addHeader("Authorization", "Bearer " + TOKEN);

//        builder.setHttpAsyncResponseConsumerFactory(

//                new HttpAsyncResponseConsumerFactory

//                        .HeapBufferedResponseConsumerFactory(30 * 1024 * 1024 * 1024));

        COMMON_OPTIONS = builder.build();

}

@Bean

    public RestHighLevelClient esRestClient(){

RestHighLevelClient restHighLevelClient =new RestHighLevelClient(

RestClient.builder(

new HttpHost("192.168.56.10",9200,"http")

)

);

return restHighLevelClient;

}

}

进行操作

package com.yuchen.mailsearch;

import com.alibaba.fastjson.JSON;

import com.yuchen.mailsearch.config.MailElasticsearchConfig;

import org.elasticsearch.action.search.SearchRequest;

import org.elasticsearch.action.search.SearchResponse;

import org.elasticsearch.client.RestHighLevelClient;

import org.elasticsearch.index.query.QueryBuilder;

import org.elasticsearch.index.query.QueryBuilders;

import org.elasticsearch.search.SearchHit;

import org.elasticsearch.search.SearchHits;

import org.elasticsearch.search.aggregations.Aggregation;

import org.elasticsearch.search.aggregations.AggregationBuilders;

import org.elasticsearch.search.aggregations.Aggregations;

import org.elasticsearch.search.aggregations.bucket.terms.Terms;

import org.elasticsearch.search.aggregations.bucket.terms.TermsAggregationBuilder;

import org.elasticsearch.search.aggregations.metrics.Avg;

import org.elasticsearch.search.aggregations.metrics.AvgAggregationBuilder;

import org.elasticsearch.search.builder.SearchSourceBuilder;

import org.hibernate.validator.resourceloading.AggregateResourceBundleLocator;

import org.junit.Test;

import org.junit.runner.RunWith;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.boot.test.context.SpringBootTest;

import org.springframework.test.context.junit4.SpringRunner;

import java.io.IOException;

import java.util.Map;

@RunWith(SpringRunner.class)

@SpringBootTest

public class MailSearchApplicationTests {

@Autowired

    RestHighLevelClientrestHighLevelClient;

@Test

    public void searchData()throws IOException {

SearchRequest searchRequest =new SearchRequest();

searchRequest.indices("bank");

SearchSourceBuilder searchSourceBuilder =new SearchSourceBuilder();

searchSourceBuilder.query(QueryBuilders.matchQuery("address","mill"));

//求年龄的值分布

        TermsAggregationBuilder ageAgg = AggregationBuilders.terms("ageAgg").field("age").size(10);

searchSourceBuilder.aggregation(ageAgg);

//求平均工资

        AvgAggregationBuilder balanceAvg = AggregationBuilders.avg("balanceAvg").field("balance");

searchSourceBuilder.aggregation(balanceAvg);

System.out.println(searchSourceBuilder.toString());

searchRequest.source(searchSourceBuilder);

SearchResponse search =restHighLevelClient.search(searchRequest, MailElasticsearchConfig.COMMON_OPTIONS);

System.out.println(search.toString());

//分析结果

        SearchHits hits = search.getHits();

SearchHit[] searchHits = hits.getHits();

for (SearchHit searchHit : searchHits){

String index = searchHit.getIndex();

String id = searchHit.getId();

float score = searchHit.getScore();

String sourceAsString = searchHit.getSourceAsString();

System.out.println("index"+index+"id"+id+"score"+score+"sourceAsString"+sourceAsString);

}

Aggregations aggregations = search.getAggregations();

Terms aggregation = aggregations.get("ageAgg");

for (Terms.Bucket bucket : aggregation.getBuckets()){

String keyAsString = bucket.getKeyAsString();

System.out.println("年龄" + keyAsString);

}

Avg aggregation1 = aggregations.get("balanceAvg");

System.out.println("平均薪资" + aggregation1.getValueAsString());

}

}

你可能感兴趣的:(基本使用注意事项)