模板题已不叫题。。
三维凸包+凸包重心+点到平面距离(体积/点积) 体积-->混合积(先点乘再叉乘)
1 #include <iostream> 2 #include<cstdio> 3 #include<cstring> 4 #include<algorithm> 5 #include<stdlib.h> 6 #include<vector> 7 #include<cmath> 8 #include<queue> 9 #include<set> 10 using namespace std; 11 #define N 510 12 #define INF 1e20 13 #define max(a,b) (a>b?a:b) 14 #define min(a,b) (a<b?a:b) 15 #define eps 1e-8 16 #define MAXV 505 17 const double pi = acos(-1.0); 18 const double inf = ~0u>>2; 19 //三维点 20 struct point3 21 { 22 double x, y,z; 23 point3() {} 24 point3(double _x, double _y, double _z): x(_x), y(_y), z(_z) {} 25 point3 operator +(const point3 p1) 26 { 27 return point3(x+p1.x,y+p1.y,z+p1.z); 28 } 29 point3 operator - (const point3 p1) 30 { 31 return point3(x - p1.x, y - p1.y, z - p1.z); 32 } 33 point3 operator * (point3 p) 34 { 35 return point3(y*p.z-z*p.y, z*p.x-x*p.z, x*p.y-y*p.x); //叉乘 36 } 37 point3 operator *(double d) 38 { 39 return point3(x*d,y*d,z*d); 40 } 41 point3 operator /(double d) 42 { 43 return point3(x/d,y/d,z/d); 44 } 45 double operator ^ (point3 p) 46 { 47 return x*p.x+y*p.y+z*p.z; //点乘 48 } 49 50 } pp[N],rp[N]; 51 struct point 52 { 53 double x,y; 54 point(double x=0,double y=0):x(x),y(y) {} 55 point operator -(point b) 56 { 57 return point(x-b.x,y-b.y); 58 } 59 } p[N],ch[N]; 60 struct _3DCH 61 { 62 struct fac 63 { 64 int a, b, c; //表示凸包一个面上三个点的编号 65 bool ok; //表示该面是否属于最终凸包中的面 66 }; 67 68 int n; //初始点数 69 point3 P[MAXV]; //初始点 70 71 int cnt; //凸包表面的三角形数 72 fac F[MAXV*8]; //凸包表面的三角形 73 74 int to[MAXV][MAXV]; 75 double vlen(point3 a) 76 { 77 return sqrt(a.x*a.x+a.y*a.y+a.z*a.z); 78 } //向量长度 79 double area(point3 a, point3 b, point3 c) 80 { 81 return vlen((b-a)*(c-a)); 82 } //三角形面积*2 83 double volume(point3 a, point3 b, point3 c, point3 d) 84 { 85 return (b-a)*(c-a)^(d-a); //四面体有向体积*6 86 } 87 //正:点在面同向 88 double point3of(point3 &p, fac &f) 89 { 90 point3 m = P[f.b]-P[f.a], n = P[f.c]-P[f.a], t = p-P[f.a]; 91 return (m * n) ^ t; 92 } 93 void deal(int p, int a, int b) 94 { 95 int f = to[a][b]; 96 fac add; 97 if (F[f].ok) 98 { 99 if (point3of(P[p], F[f]) > eps) 100 dfs(p, f); 101 else 102 { 103 add.a = b, add.b = a, add.c = p, add.ok = 1; 104 to[p][b] = to[a][p] = to[b][a] = cnt; 105 F[cnt++] = add; 106 } 107 } 108 } 109 void dfs(int p, int cur) 110 { 111 F[cur].ok = 0; 112 deal(p, F[cur].b, F[cur].a); 113 deal(p, F[cur].c, F[cur].b); 114 deal(p, F[cur].a, F[cur].c); 115 } 116 bool same(int s, int t) 117 { 118 point3 &a = P[F[s].a], &b = P[F[s].b], &c = P[F[s].c]; 119 return fabs(volume(a, b, c, P[F[t].a])) < eps && fabs(volume(a, b, c, P[F[t].b])) < eps && fabs(volume(a, b, c, P[F[t].c])) < eps; 120 } 121 //构建三维凸包 122 void construct() 123 { 124 cnt = 0; 125 if (n < 4) 126 return; 127 bool sb = 1; 128 //使前两点不公点 129 for (int i = 1; i < n; i++) 130 { 131 if (vlen(P[0] - P[i]) > eps) 132 { 133 swap(P[1], P[i]); 134 sb = 0; 135 break; 136 } 137 } 138 if (sb)return; 139 sb = 1; 140 //使前三点不公线 141 for (int i = 2; i < n; i++) 142 { 143 if (vlen((P[0] - P[1]) * (P[1] - P[i])) > eps) 144 { 145 swap(P[2], P[i]); 146 sb = 0; 147 break; 148 } 149 } 150 if (sb)return; 151 sb = 1; 152 //使前四点不共面 153 for (int i = 3; i < n; i++) 154 { 155 if (fabs((P[0] - P[1]) * (P[1] - P[2]) ^ (P[0] - P[i])) > eps) 156 { 157 swap(P[3], P[i]); 158 sb = 0; 159 break; 160 } 161 } 162 if (sb)return; 163 fac add; 164 for (int i = 0; i < 4; i++) 165 { 166 add.a = (i+1)%4, add.b = (i+2)%4, add.c = (i+3)%4, add.ok = 1; 167 if (point3of(P[i], add) > 0) 168 swap(add.b, add.c); 169 to[add.a][add.b] = to[add.b][add.c] = to[add.c][add.a] = cnt; 170 F[cnt++] = add; 171 } 172 for (int i = 4; i < n; i++) 173 { 174 for (int j = 0; j < cnt; j++) 175 { 176 if (F[j].ok && point3of(P[i], F[j]) > eps) 177 { 178 dfs(i, j); 179 break; 180 } 181 } 182 } 183 int tmp = cnt; 184 cnt = 0; 185 for (int i = 0; i < tmp; i++) 186 { 187 if (F[i].ok) 188 { 189 F[cnt++] = F[i]; 190 } 191 } 192 } 193 //表面积 194 double area() 195 { 196 double ret = 0.0; 197 for (int i = 0; i < cnt; i++) 198 { 199 ret += area(P[F[i].a], P[F[i].b], P[F[i].c]); 200 } 201 return ret / 2.0; 202 } 203 double ptoface(point3 p,int i) 204 { 205 return fabs(volume(P[F[i].a],P[F[i].b],P[F[i].c],p)/vlen((P[F[i].b]-P[F[i].a])*(P[F[i].c]-P[F[i].a]))); 206 } 207 //体积 208 double volume() 209 { 210 point3 O(0, 0, 0); 211 double ret = 0.0; 212 for (int i = 0; i < cnt; i++) 213 { 214 ret += volume(O, P[F[i].a], P[F[i].b], P[F[i].c]); 215 } 216 return fabs(ret / 6.0); 217 } 218 //表面三角形数 219 int facetCnt_tri() 220 { 221 return cnt; 222 } 223 224 //表面多边形数 225 int facetCnt() 226 { 227 int ans = 0; 228 for (int i = 0; i < cnt; i++) 229 { 230 bool nb = 1; 231 for (int j = 0; j < i; j++) 232 { 233 if(same(i, j)) 234 { 235 nb = 0; 236 break; 237 } 238 } 239 ans += nb; 240 } 241 return ans; 242 } 243 //三维凸包重心 244 point3 barycenter() 245 { 246 point3 ans(0,0,0),o(0,0,0); 247 double all=0; 248 for(int i=0;i<cnt;i++) 249 { 250 double vol=volume(o,P[F[i].a],P[F[i].b],P[F[i].c]); 251 ans=ans+(o+P[F[i].a]+P[F[i].b]+P[F[i].c])/4.0*vol; 252 all+=vol; 253 } 254 ans=ans/all; 255 return ans; 256 } 257 258 }hull; 259 260 void solve() 261 { 262 double ans = INF; 263 int i; 264 int cnt = hull.cnt; 265 point3 pp = hull.barycenter(); 266 for(i = 0 ; i < cnt ; i++) 267 { 268 ans = min(ans,hull.ptoface(pp,i)); 269 } 270 printf("%.3f\n",ans); 271 } 272 int main() 273 { 274 int n,i; 275 while(scanf("%d",&n)!=EOF) 276 { 277 hull.n = n; 278 for(i = 0 ; i < n; i++) 279 { 280 scanf("%lf%lf%lf",&pp[i].x,&pp[i].y,&pp[i].z); 281 hull.P[i] = pp[i]; 282 } 283 hull.construct(); 284 solve(); 285 } 286 }