作者:张武科
概述
紧密中心度(Closeness Centrality)计量了一个节点到其他所有节点的紧密性,即该节点到其他节点的距离的倒数;节点对应的值越高表示紧密性越好,能够在图中传播信息的能力越强,可用以衡量信息流入或流出该节点的能力,多用与社交网络中关键节点发掘等场景。
算法介绍
对于图中一个给定节点,紧密性中心性是该节点到其他所有节点的最小距离和的倒数:
其中,u表示待计算紧密中心度的节点,d(u, v)表示节点u到节点v的最短路径距离;实际场景中,更多地使用归一化后的紧密中心度,即计算目标节点到其他节点的平均距离的倒数:
其中,n表示图中节点数。
算法实现
首先,基于AlgorithmUserFunction
接口实现ClosenessCentrality
,如下:
@Description(name = "closeness_centrality", description = "built-in udga for ClosenessCentrality")
public class ClosenessCentrality implements AlgorithmUserFunction {
private AlgorithmRuntimeContext context;
private long sourceId;
@Override
public void init(AlgorithmRuntimeContext context, Object[] params) {
this.context = context;
if (params.length != 1) {
throw new IllegalArgumentException("Only support one arguments, usage: func(sourceId)");
}
this.sourceId = ((Number) params[0]).longValue();
}
@Override
public void process(RowVertex vertex, Iterator messages) {
List edges = context.loadEdges(EdgeDirection.OUT);
if (context.getCurrentIterationId() == 1L) {
context.sendMessage(vertex.getId(), 1L);
context.sendMessage(sourceId, 1L);
} else if (context.getCurrentIterationId() == 2L) {
context.updateVertexValue(ObjectRow.create(0L, 0L));
if (vertex.getId().equals(sourceId)) {
long vertexNum = -2L;
while (messages.hasNext()) {
messages.next();
vertexNum++;
}
// 统计节点数
context.updateVertexValue(ObjectRow.create(0L, vertexNum));
// 向邻接点发送与目标点距离
sendMessageToNeighbors(edges, 1L);
}
} else {
if (vertex.getId().equals(sourceId)) {
long sum = (long) vertex.getValue().getField(0, LongType.INSTANCE);
while (messages.hasNext()) {
sum += messages.next();
}
long vertexNum = (long) vertex.getValue().getField(1, LongType.INSTANCE);
// 记录最短距离和
context.updateVertexValue(ObjectRow.create(sum, vertexNum));
} else {
if (((long) vertex.getValue().getField(1, LongType.INSTANCE)) < 1) {
Long meg = messages.next();
context.sendMessage(sourceId, meg);
// 向邻接点发送与目标点距离
sendMessageToNeighbors(edges, meg + 1);
// 标记该点已向目标点发送过消息
context.updateVertexValue(ObjectRow.create(0L, 1L));
}
}
}
}
private void sendMessageToNeighbors(List outEdges, Object message) {
for (RowEdge rowEdge : outEdges) {
context.sendMessage(rowEdge.getTargetId(), message);
}
}
@Override
public void finish(RowVertex vertex) {
if (vertex.getId().equals(sourceId)) {
long len = (long) vertex.getValue().getField(0, LongType.INSTANCE);
long num = (long) vertex.getValue().getField(1, LongType.INSTANCE);
context.take(ObjectRow.create(vertex.getId(), (double) num / len));
}
}
@Override
public StructType getOutputType() {
return new StructType(
new TableField("id", LongType.INSTANCE, false),
new TableField("cc", DoubleType.INSTANCE, false)
);
}
}
然后,可在 DSL 中引入自定义算法,直接调用使用,语法形式如下:
CREATE Function closeness_centrality AS 'com.antgroup.geaflow.dsl.udf.ClosenessCentrality';
INSERT INTO tbl_result
CALL closeness_centrality(1) YIELD (vid, ccValue)
RETURN vid, ROUND(ccValue, 3)
;
示例表示,计算图中 id = 1
节点的紧密中心度。
算法运行
在运行算法之前,要构造算法运行的底图数据。
图定义
首先,进行图定义:
CREATE GRAPH modern (
Vertex person (
id bigint ID,
name varchar,
age int
),
Vertex software (
id bigint ID,
name varchar,
lang varchar
),
Edge knows (
srcId bigint SOURCE ID,
targetId bigint DESTINATION ID,
weight double
),
Edge created (
srcId bigint SOURCE ID,
targetId bigint DESTINATION ID,
weight double
)
) WITH (
storeType='rocksdb',
shardNum = 1
);
图构建
完成图定义之后,导入点边数据,构造数据底图:
CREATE TABLE modern_vertex (
id varchar,
type varchar,
name varchar,
other varchar
) WITH (
type='file',
geaflow.dsl.file.path = 'resource:///data/modern_vertex.txt'
);
CREATE TABLE modern_edge (
srcId bigint,
targetId bigint,
type varchar,
weight double
) WITH (
type='file',
geaflow.dsl.file.path = 'resource:///data/modern_edge.txt'
);
INSERT INTO modern.person
SELECT cast(id as bigint), name, cast(other as int) as age
FROM modern_vertex WHERE type = 'person'
;
INSERT INTO modern.software
SELECT cast(id as bigint), name, cast(other as varchar) as lang
FROM modern_vertex WHERE type = 'software'
;
INSERT INTO modern.knows
SELECT srcId, targetId, weight
FROM modern_edge WHERE type = 'knows'
;
INSERT INTO modern.created
SELECT srcId, targetId, weight
FROM modern_edge WHERE type = 'created'
;
计算输出
最后,在底图数据上完成算法计算和结果输出;
CREATE TABLE tbl_result (
vid int,
ccValue double
) WITH (
type='file',
geaflow.dsl.file.path='/tmp/result'
);
CREATE Function closeness_centrality AS 'com.antgroup.geaflow.dsl.udf.ClosenessCentrality';
USE GRAPH modern;
INSERT INTO tbl_result
CALL closeness_centrality(1) YIELD (vid, ccValue)
RETURN vid, ROUND(ccValue, 3)
;
运行示例
input
// vertex 1,person,marko,29 2,person,vadas,27 3,software,lop,java 4,person,josh,32 5,software,ripple,java 6,person,peter,35 // edge 1,3,created,0.4 1,2,knows,0.5 1,4,knows,1.0 4,3,created,0.4 4,5,created,1.0 3,6,created,0.2
output
// result 1,0.714
结语
在本篇文章中我们介绍了如何在TuGraph Analytics上实现紧密中心度算法,如果你觉得比较有趣,欢迎关注我们的社区(https://github.com/TuGraph-family/tugraph-analytics)。开源不易,如果你觉得还不错,可以给我们star支持一下~
GeaFlow(品牌名TuGraph-Analytics) 已正式开源,欢迎大家关注!!!
欢迎给我们 Star 哦!
Welcome to give us a Star!
GitHubhttps://github.com/TuGraph-family/tugraph-analytics
更多精彩内容,关注我们的博客 https://geaflow.github.io/