并发总结(四)关于执行器 ThreadPoolExecutor

(一)执行器 Executor

执行器内部有一个任务队列 BlockingQueue 和一个线程池 Workers,客户端不断地往任务队列中添加任务,工作者线程则不断地从任务队列移除并执行任务

(二)执行器的创建

//取自ThreadPoolExecutor构造方法
 /**
     * @param corePoolSize 最少线程数
     * @param maximumPoolSize 最多线程数
     * @param keepAliveTime 线程多久不执行任务就会被关闭
     * @param unit keepAliveTime 的时间单位
     * @param workQueue 任务队列
     * @param threadFactory 线程工厂
     * @param handler 饱和策略
     */
public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue workQueue,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler) {
    //...
    }
1) 线程工厂

默认ThreadFactory的实现类为Executors.DefaultThreadFactory,但在实际使用中,不能使用默认的线程工厂,因为必须要为线程指定有意义的线程名

取自Executors$DefaultThreadFactory
 static class DefaultThreadFactory implements ThreadFactory {
// 线程池计数
        private static final AtomicInteger poolNumber = new AtomicInteger(1);
        private final ThreadGroup group;
// 池中的线程计数
        private final AtomicInteger threadNumber = new AtomicInteger(1);
        private final String namePrefix;

        DefaultThreadFactory() {
            SecurityManager s = System.getSecurityManager();
            group = (s != null) ? s.getThreadGroup() :
                                  Thread.currentThread().getThreadGroup();
            namePrefix = "pool-" +
                          poolNumber.getAndIncrement() +
                         "-thread-";
        }

        public Thread newThread(Runnable r) {
            Thread t = new Thread(group, r,
                                  namePrefix + threadNumber.getAndIncrement(),
                                  0);
            if (t.isDaemon())
                t.setDaemon(false);
            if (t.getPriority() != Thread.NORM_PRIORITY)
                t.setPriority(Thread.NORM_PRIORITY);
            return t;
        }
    }
//自定义线程工厂-命名线程
ThreadFactory threadFactory = new ThreadFactory() {
                    private final AtomicInteger counter = new AtomicInteger(1);
                    public Thread newThread(Runnable r) {
                        return new Thread(r, "hippo_monitor_" + counter.getAndIncrement());
                    }
                }
2) 饱和策略

饱和策略是在任务提交时可能发生
默认采用AbortPolicy作为饱和策略

1)中断提交者策略
public static class AbortPolicy implements RejectedExecutionHandler {
        public AbortPolicy() { }
// 提交任务时抛出RejectedExecutionException异常
        public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
            throw new RejectedExecutionException("Task " + r.toString() +
                                                 " rejected from " +
                                                 e.toString());
        }
    }
2)丢弃任务策略
public static class DiscardPolicy implements RejectedExecutionHandler {
        public DiscardPolicy() { }
// 提交任务时直接丢弃
        public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
        }
    }
3)提交者自己运行策略
public static class CallerRunsPolicy implements RejectedExecutionHandler {
        public CallerRunsPolicy() { }
// 提交任务时由提交者自己运行
        public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
            if (!e.isShutdown()) {
                r.run();
            }
        }
    }
3) Executors创建的4大执行器的缺点

1)CachedThreadPoolScheduledThreadPool 允许创建的线程数量为Integer.MAX_VALUE,为每一个任务分配一个线程,可能会创建大量的线程,从而导致资源耗尽
2)FixedThreadPoolSingleThreadPool 使用LinkedBlockingQueue作为任务队列,队列的最大长度为Integer.MAX_VALUE,可能会堆积大量的任务,从而导致资源耗尽
3)以上四种执行器都使用默认的线程工厂,线程名都是:pool-数字-thread-数字,不方便在出错时回溯
由上所述,规范下,线程池不允许使用Executors创建,而是直接通过调用ThreadPoolExecutor的构造方法创建

//Executors.newCachedThreadPool()
public static ExecutorService newCachedThreadPool() {
        return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                      60L, TimeUnit.SECONDS,
                                      new SynchronousQueue());
    }
//Executors.newScheduledThreadPool(10)
public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) {
        return new ScheduledThreadPoolExecutor(corePoolSize);
    }
 public ScheduledThreadPoolExecutor(int corePoolSize) {
        super(corePoolSize, Integer.MAX_VALUE, 0, NANOSECONDS,
              new DelayedWorkQueue());
    }
//Executors.newSingleThreadExecutor()
public static ExecutorService newSingleThreadExecutor() {
        return new FinalizableDelegatedExecutorService
            (new ThreadPoolExecutor(1, 1,
                                    0L, TimeUnit.MILLISECONDS,
                                    new LinkedBlockingQueue()));
    }
//Executors.newFixedThreadPool(10)
public static ExecutorService newFixedThreadPool(int nThreads) {
        return new ThreadPoolExecutor(nThreads, nThreads,
                                      0L, TimeUnit.MILLISECONDS,
                                      new LinkedBlockingQueue());
    }

(三)生命周期

// 当前的运行状态
    private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
 // 所有的状态
    private static final int RUNNING    = -1 << COUNT_BITS;
    private static final int SHUTDOWN   =  0 << COUNT_BITS;
    private static final int STOP       =  1 << COUNT_BITS;
    private static final int TIDYING    =  2 << COUNT_BITS;
    private static final int TERMINATED =  3 << COUNT_BITS;

一些生命周期的方法

1)
private static boolean isRunning(int c) {
        return c < SHUTDOWN;
}
2)
public boolean isShutdown() {
        return ! isRunning(ctl.get());
}
3)
public boolean isTerminated() {
        return runStateAtLeast(ctl.get(), TERMINATED);
}
4)
public boolean awaitTermination(long timeout, TimeUnit unit)
        throws InterruptedException {
        long nanos = unit.toNanos(timeout);
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
// 轮询判断运行状态是否为TERMINATED以及是否到点
            for (;;) {
                if (runStateAtLeast(ctl.get(), TERMINATED))
                    return true;
                if (nanos <= 0)
                    return false;
                nanos = termination.awaitNanos(nanos);
            }
        } finally {
            mainLock.unlock();
        }
}
5)
 public void shutdown() {
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            checkShutdownAccess();
            advanceRunState(SHUTDOWN);
// 中断所有的空闲线程
            interruptIdleWorkers();
            onShutdown(); // hook for ScheduledThreadPoolExecutor
        } finally {
            mainLock.unlock();
        }
        tryTerminate();
}
6)
public List shutdownNow() {
        List tasks;
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            checkShutdownAccess();
            advanceRunState(STOP);
// 中断所有的线程
            interruptWorkers();
            tasks = drainQueue();
        } finally {
            mainLock.unlock();
        }
        tryTerminate();
        return tasks;
}

你可能感兴趣的:(并发总结(四)关于执行器 ThreadPoolExecutor)