- STM32F103C8T6主流性能系列,ARM Cortex-M3 MCU,带64k字节闪存
li15817260414
单片机stm32嵌入式硬件
STM32F103xx中密度性能系列集成了工作频率为72MHz的高性能ARMCortex-M332位RISC内核、高速嵌入式存储器(最高128字节的闪存和最高20k字节的SRAM),以及连接到两条APB总线的各种增强型I/o和外设。所有器件都提供两个12位ADC、三个通用16位定时器和一个PWM定时器,以及标准和高级通信接口:最多两个I2C和SPI、三个USARTs、一个USB和一个CAN。这些器
- STM32F103RBT6 mcu芯片
li15817260414
单片机stm32嵌入式硬件
主流性能系列,ARMCortex-M3MCU,带128千字节闪存、72MHzCPU、电机控制、USB和CANSTM32F103xx中密度性能系列集成了工作频率为72MHz的高性能ARMCortex-M332位RISC内核、高速嵌入式存储器(最高128字节的闪存和最高20k字节的SRAM),以及连接到两条APB总线的各种增强型I/o和外设。所有器件都提供两个12位ADC、三个通用16位定时器和一个P
- Kubernetes operator(七) kubebuilder 的安装及简单使用 篇
grahamzhu
云原生学习专栏kubernetesgolangkubebuilderoperatorCRD云原生容器
云原生学习路线导航页(持续更新中)本文是Kubernetesoperator学习系列第七篇,对目前编写Operator的常用脚手架kubebuilder进行学习,主要涉及**kubebuilder的安装及简单使用**,kubebuilder的原理会在后续介绍基于kubernetesv1.24.0代码分析Kubernetesoperator学习系列快捷链接Kubernetesoperator(一)c
- 浏览器发请求不携 cookie (加了跨域失败)
Wdc_12
状态模式javaspringboot
1.发送请求后端产生的唯一的sessionid,服务器会通过HTTP响应头中的Set-Cookie字段将SessionID发送到客户端。客户端(浏览器)收到响应后,会将SessionID存储为cookie。但由于跨域了不自动携带cookie2.加withCredentials所以在前端加上了:myAxios.defaults.withCredentials=true3.出现了跨域的错误,CORS请
- 敏捷开发之自动化流水线
舒旻
敏捷项目管理devops敏捷流程scrum软件工程敏捷开发
自动化流水线就像给软件交付装上了「智能检测仪」,每个环节自动过滤风险,确保最终交付物既安全又高质量。以下是一个在线教育平台支付系统升级的实战案例,完整展示从开发到上线的全流程。以下是「在线教育平台支付系统升级」案例的完整责任矩阵:责任分工框架环节主要责任人协作角色关键交付物协作工具1.代码开发与提交后端开发工程师技术负责人、产品经理功能代码、单元测试GitLab、JIRA2.代码安全审查安全工程师
- 基于hive的电信离线用户的行为分析系统
赵谨言
论文经验分享毕业设计
标题:基于hive的电信离线用户的行为分析系统内容:1.摘要随着电信行业的快速发展,用户行为数据呈现出海量、复杂的特点。为了深入了解用户行为模式,提升电信服务质量和精准营销能力,本研究旨在构建基于Hive的电信离线用户行为分析系统。通过收集电信用户的通话记录、上网行为、短信使用等多源数据,利用Hive数据仓库工具进行数据存储和处理,采用数据挖掘和机器学习算法对用户行为进行分析。实验结果表明,该系统
- OpenCV实现在图像中绘制汉字
海上的风浪
opencv人工智能计算机视觉编程
在本文中,我将向您展示如何使用OpenCV库在图像中绘制汉字。OpenCV是一个广泛使用的计算机视觉库,它提供了许多强大的功能,包括图像处理和绘图。首先,我们需要安装OpenCV库。您可以通过在终端或命令提示符中运行以下命令来安装它:pipinstallopencv-python接下来,我们将使用Python编写代码来实现在图像中绘制汉字。请确保您已经安装了Python和OpenCV库。impor
- 【精华推荐】AI大模型学习必逛的十大顶级网站
大模型入门学习
人工智能学习大模型入门llama大模型教程大模型学习大模型
随着人工智能技术的快速发展,AI大模型(如GPT-3、BERT等)在自然语言处理、计算机视觉等领域取得了显著的成果。对于希望深入学习AI大模型的开发者和研究者来说,找到合适的学习资源至关重要。本文将为大家推荐十大必备网站,帮助你更好地理解和应用AI大模型。1.CourseraCoursera是一个在线学习平台,提供各类AI和机器学习课程,包括斯坦福大学的机器学习课程和深度学习专项课程。通过视频讲解
- 【大模型学习】第八章 深入理解机器学习技术细节
好多渔鱼好多
AI大模型机器学习AI大模型人工智能
目录引言一、监督学习(SupervisedLearning)1.定义与工作原理2.常见任务3.应用场景示例:房价预测二、无监督学习(UnsupervisedLearning)1.定义与工作原理2.常见任务3.应用场景示例:客户细分三、强化学习(ReinforcementLearning)1.定义与工作原理2.常见应用场景3.应用场景示例:游戏AI四、集成学习(EnsembleLearning)1.
- 瑞萨微控制器 R5F100FEAFP#10 适用于各种嵌入式应用 提供样品测试+数据资料 常备现货
li15817260414
云计算电视盒子物联网智能家居
瑞萨电子的R5F100FEAFP#10是一款基于RL78/G13系列的16位微控制器,适用于各种嵌入式应用。其主要参数如下:核心处理器:RL78,16位架构,最高工作频率32MHz。存储器:程序存储器:64KB闪存。数据存储器:4KBRAM。EEPROM:4KB。I/O端口:提供31个通用输入/输出引脚。外设功能:通信接口:支持CSI、I2C、LIN总线、UART/USART等多种通信方式。模数转
- 深度学习分类回归(衣帽数据集)
何仙鸟
深度学习分类回归
一、步骤1加载数据集fashion_minst2搭建classNeuralNetwork模型3设置损失函数,优化器4编写评估函数5编写训练函数6开始训练7绘制损失,准确率曲线二、代码导包,打印版本号:importmatplotlibasmplimportmatplotlib.pyplotasplt%matplotlibinlineimportnumpyasnpimportsklearnimport
- 从零开始 CMake 学习笔记 (E)installing
OOOrchid
混合计算c++cmake
从零开始CMake学习笔记(E)installing开始前先默念三遍口诀:DeclareatargetDeclaretarget’straitsIt’sallabouttargets本系列主要根据GitHub上的cmake-examples项目进行翻译总结,同时对于不清晰的概念及函数进行查阅理解记录形成。文章目录从零开始CMake学习笔记(E)installing1介绍1.1文件树1.2文件简介2
- Stable Diffusion模型Pony系列模型深度解析
Liudef06
StableDiffusion人工智能人工智能作画stablediffusionAI作画
StableDiffusion模型Pony系列模型深度解析一、技术架构与核心特性基于SDXL的深度优化Pony系列模型以SDXL为基础框架,通过针对二次元/动漫风格的微调,强化了在该领域的生成能力,同时保留了对写实场景的兼容性。其训练数据特别侧重于人物结构、动态姿势和风格化渲染,尤其在处理复杂肢体动作(如手部细节)方面表现出色。训练策略:采用混合精度训练(fp16/bf16)和分层权重调整技术
- Milvus 数据批量导入实战:Python代码解析
修破立生
Milvusmilvuspython人工智能
1引言在处理大规模数据的存储和检索时,向量数据库逐渐成为一种热门的解决方案。Milvus作为一款高性能的向量数据库,在人工智能、机器学习等领域有着广泛的应用。本文将介绍如何使用Python代码将数据批量导入到Milvus数据库中,通过实际的代码示例来帮助大家理解导入过程和相关的技术要点。2代码功能概述我们的代码主要实现了从本地文件读取数据,并将其批量导入到Milvus数据库的功能。代码涉及到命令行
- 基于RK3588的AI摄像头应用解决方案
浙江启扬智能科技有限公司
linuxARM嵌入式开发嵌入式硬件
随着人工智能(AI)技术的快速发展,越来越多的视频监控系统开始直接在摄像头上部署AI分析,视频监控从早期的图像记录发展到如今具备AI运算能力和算法,可进行目标识别、行为分析以及事件反馈,实现从被动记录到主动预警的转变。目前有三种算力部署方式:AI分析部署在云端、AI分析部署在边缘、AI分析部署在摄像头,也就是我们常说的云,边,端。但越来越多的摄像头本身就集成了AI分析能力,这一趋势的出现存在多方面
- AI江湖风云:GPT-4.5与Grok-3的巅峰对决
广拓科技
人工智能
在科技飞速发展的今天,人工智能领域的竞争可谓是一场没有硝烟的战争。各大科技巨头和新兴企业纷纷投入大量资源,力求在这个充满无限可能的领域中抢占先机。就在前不久,AI界发生了一件大事,OpenAI的明星产品GPT-4.5竟然被马斯克旗下xAI公司的Grok-3反超,这个消息犹如一颗重磅炸弹,瞬间在科技圈掀起了惊涛骇浪。大家纷纷猜测,这背后究竟隐藏着怎样的故事?Grok-3究竟凭什么能够后来居上,实现对
- OLMo 7B:推动自然语言处理领域的技术革新
单皎娥
OLMo7B:推动自然语言处理领域的技术革新OLMo-7B项目地址:https://gitcode.com/hf_mirrors/ai-gitcode/OLMo-7B引言随着人工智能技术的飞速发展,自然语言处理(NLP)领域取得了显著的进步。然而,在实际应用中,NLP技术仍然面临着诸多挑战,如语境理解、信息抽取、情感分析等。为了解决这些问题,艾伦人工智能研究所(AI2)推出了OLMo系列模型,其中
- 探索未来文本的无限可能:OLMo 开源语言模型深度解析
钟洁祺
探索未来文本的无限可能:OLMo开源语言模型深度解析OLMoModeling,training,eval,andinferencecodeforOLMo项目地址:https://gitcode.com/gh_mirrors/ol/OLMo在人工智能的浩瀚领域中,一个崭新的星体正在升起——OLMo:OpenLanguageModel。由AI2(艾伦人工智能研究所)的科学家们精心打造,OLMo不仅仅是
- c语言基础系列8-条件编译
aiweker
AI工程化C语言c语言
条件编译在C语言中,条件编译是一种预处理器功能,它允许根据条件来选择性地包含或排除代码片段。条件编译通常使用#if、#ifdef、#ifndef、#elif、#else和#endif等预处理指令来实现。条件编译允许程序员在编译时根据不同的条件编译不同的代码,例如根据不同的操作系统或编译器进行条件编译。下面是一个条件编译的使用例子:#include#defineDEBUG1intmain(){#if
- L1与L2正则化:防止过拟合的双刃剑
XianxinMao
人工智能人工智能机器学习算法
标题:L1与L2正则化:防止过拟合的双刃剑文章信息摘要:L1和L2正则化是防止机器学习模型过拟合的两种关键技术。L1正则化(Lasso)通过将不重要的特征权重归零来实现特征选择,适用于稀疏模型和高维数据集,但可能导致欠拟合。L2正则化(Ridge)则通过减少权重的大小来防止过拟合,适用于处理高度相关特征和噪声数据,提高模型稳定性。两者各有优势,选择哪种正则化技术取决于数据集特性和模型需求。有时,结
- 【OpenLayers】WebGIS的二次开发(1)——代码编写
Anchenry
GIS可视化前端jsjson
0、缘起本文章主要讲述基于OpenLayers的WebGIS的二次开发功能的主要实现过程并附上部分代码,主要有地图缩放控件、导航控件、比例尺控件、鹰眼控件、全屏显示控件、图层探查控件、动画效果控件、地图切换功能、测量功能、图文标注功能、Popup标注功能、视图联动功能、地图定位功能、热点图、统计图以及搜索功能。本系列的第二篇文章将主要演示实现的效果。1、添加地图及地图切换功能开发网页地图首先就是需
- 软件工程---软件测试
Dragonlongbo
软件工程
软件测试是指在软件开发过程中,通过一系列的测试活动来评估和验证软件系统或应用程序的质量。它是一种用于发现和修复软件缺陷、错误和问题的过程,旨在确保软件能够满足其预期功能、性能和安全需求。软件测试分类软件测试可以按照多个维度进行分类,最常见的分类方式有以下几种:按测试阶段分:单元测试、集成测试、系统测试、验收测试按测试目的分:功能测试、性能测试、安全测试、兼容性测试按测试覆盖范围分:回归测试、全面测
- AbMole肿瘤研究综述(二):靶向抑制剂与人源单抗,开启肿瘤研究新篇章
AbMole
AbMole生物化学生物试剂科研生物实验
肿瘤的研究一直是生命科学和基础医学领域中的热门话题,随着分子生物学和肿瘤生物学等学科的发展,人们逐渐明确了一系列与肿瘤发生和转移等密切关系的基因、蛋白,包括多种受体酪氨酸激酶(RTKs,如EGFR、ALK、c-Met、TRK、BCR-ABL等)和非RTKs(如BCR-ABL、BTK、CDK等),以及一些重要的细胞信号通路,如RAS/RAF/MEK、PI3K/mTOR等。AbMole向大家介绍围绕上
- 手写数字识别项目:从原理到实践
北屿升:
微信新浪微博facebook微信公众平台百度
在当今数字化时代,手写数字识别作为模式识别和人工智能领域的重要应用,有着广泛的用途,如邮政信封上的邮编识别、银行支票上的数字处理等。本文将详细介绍手写数字识别项目的相关内容,包括原理、数据集、实现步骤和应用前景。一、手写数字识别原理手写数字识别主要依赖于模式识别和机器学习技术。其基本原理是将手写数字的图像转换为计算机能够处理的数字信号,然后通过特征提取和分类算法来判断该数字的具体值。常用的特征提取
- 新闻推荐系统:Spring Boot框架详解
2402_85758936
springboot后端java
2相关技术2.1MYSQL数据库MySQL是一个真正的多用户、多线程SQL数据库服务器。是基于SQL的客户/服务器模式的关系数据库管理系统,它的有点有有功能强大、使用简单、管理方便、安全可靠性高、运行速度快、多线程、跨平台性、完全网络化、稳定性等,非常适用于Web站点或者其他应用软件的数据库后端的开发工作。此外,用户可利用许多语言编写访问MySQL数据库的程序。作为开放源代码运动的产物之一,MyS
- Dolma:开源大规模语言模型预训练数据集与工具包
2401_87458718
语言模型人工智能自然语言处理
Dolma:开源大规模语言模型预训练数据集与工具包Dolma是由Allen人工智能研究所(AI2)开发的一个开源项目,旨在为大规模语言模型的预训练提供高质量的数据集和强大的数据处理工具。Dolma包含两个主要组成部分:Dolma数据集和Dolma工具包。Dolma数据集Dolma数据集是一个包含3万亿个token的开放数据集,涵盖了多样化的内容来源,包括网页内容、学术出版物、代码、书籍和百科全书材
- BP神经网络计算过程:从数学原理到实践优化
Acd_713
BP神经网络神经网络人工智能深度学习
引言:神经网络的时代意义与BP算法地位在深度学习重构人工智能边界的今天(Goodfellowetal.,2016),误差反向传播(Backpropagation,BP)算法作为神经网络训练的基石,其数学优雅性和工程实用性完美统一。本文将深入剖析BP神经网络的计算本质,揭示其如何在非线性空间中构建认知通道。第1章神经网络拓扑结构的数学建模1.1生物神经元到M-P模型的抽象跃迁McCulloch-Pi
- 成为LLM大师的必读书籍:这几本大模型书籍,详细到让你一篇文章就收藏足够
AGI大模型老王
产品经理大模型教程学习大模型人工智能LLM大模型书籍
以下是几本关于大模型和人工智能领域的经典书籍,它们各自具有独特的特点和适用人群:《深度学习》(DeepLearning)作者:伊恩·古德费洛(IanGoodfellow)、约书亚·本吉奥(YoshuaBengio)、亚伦·库维尔(AaronCourville)简介:《深度学习》是深度学习领域的经典之作,全面介绍了深度学习的基础知识、主要模型及其应用。书中详细讲解了神经网络、卷积神经网络、循环神经网
- 深度学习模型未来可能会在这些领域取得突破性进展
xinxiyinhe
人工智能深度学习人工智能深度学习模型深度学习
深度学习模型作为人工智能的核心技术之一,未来有望在多个领域取得突破性进展。以下是一些可能的方向:1.通用人工智能(AGI)目标:开发具有通用智能的模型,能够像人类一样处理多种任务。潜在突破:更强的推理和抽象能力,解决复杂问题。结合多模态数据(文本、图像、声音等)实现更全面的理解。自我学习和适应能力,减少对大量标注数据的依赖。2.医疗与生命科学目标:提升疾病诊断、药物研发和个性化治疗的水平。潜在突破
- 20道<Mysql>面试题(超级易懂版)
Beuself.
mysql数据库
MySQL中的InnoDB和MyISAM存储引擎有什么区别?InnoDB:就像是一辆有安全气囊和ABS系统的车,注重数据的安全和完整性,支持事务(保证一系列操作要么全部成功,要么全部失败),还能处理并发操作。MyISAM:就像是一辆没有安全气囊的老旧车,速度快但是没有那么多安全措施,不支持事务,适合读多写少的情况。如何创建一个MySQL数据库和表?创建数据库:就像是建一个新文件夹。CREATEDA
- 项目中 枚举与注解的结合使用
飞翔的马甲
javaenumannotation
前言:版本兼容,一直是迭代开发头疼的事,最近新版本加上了支持新题型,如果新创建一份问卷包含了新题型,那旧版本客户端就不支持,如果新创建的问卷不包含新题型,那么新旧客户端都支持。这里面我们通过给问卷类型枚举增加自定义注解的方式完成。顺便巩固下枚举与注解。
一、枚举
1.在创建枚举类的时候,该类已继承java.lang.Enum类,所以自定义枚举类无法继承别的类,但可以实现接口。
- 【Scala十七】Scala核心十一:下划线_的用法
bit1129
scala
下划线_在Scala中广泛应用,_的基本含义是作为占位符使用。_在使用时是出问题非常多的地方,本文将不断完善_的使用场景以及所表达的含义
1. 在高阶函数中使用
scala> val list = List(-3,8,7,9)
list: List[Int] = List(-3, 8, 7, 9)
scala> list.filter(_ > 7)
r
- web缓存基础:术语、http报头和缓存策略
dalan_123
Web
对于很多人来说,去访问某一个站点,若是该站点能够提供智能化的内容缓存来提高用户体验,那么最终该站点的访问者将络绎不绝。缓存或者对之前的请求临时存储,是http协议实现中最核心的内容分发策略之一。分发路径中的组件均可以缓存内容来加速后续的请求,这是受控于对该内容所声明的缓存策略。接下来将讨web内容缓存策略的基本概念,具体包括如如何选择缓存策略以保证互联网范围内的缓存能够正确处理的您的内容,并谈论下
- crontab 问题
周凡杨
linuxcrontabunix
一: 0481-079 Reached a symbol that is not expected.
背景:
*/5 * * * * /usr/IBMIHS/rsync.sh
- 让tomcat支持2级域名共享session
g21121
session
tomcat默认情况下是不支持2级域名共享session的,所有有些情况下登陆后从主域名跳转到子域名会发生链接session不相同的情况,但是只需修改几处配置就可以了。
打开tomcat下conf下context.xml文件
找到Context标签,修改为如下内容
如果你的域名是www.test.com
<Context sessionCookiePath="/path&q
- web报表工具FineReport常用函数的用法总结(数学和三角函数)
老A不折腾
Webfinereport总结
ABS
ABS(number):返回指定数字的绝对值。绝对值是指没有正负符号的数值。
Number:需要求出绝对值的任意实数。
示例:
ABS(-1.5)等于1.5。
ABS(0)等于0。
ABS(2.5)等于2.5。
ACOS
ACOS(number):返回指定数值的反余弦值。反余弦值为一个角度,返回角度以弧度形式表示。
Number:需要返回角
- linux 启动java进程 sh文件
墙头上一根草
linuxshelljar
#!/bin/bash
#初始化服务器的进程PId变量
user_pid=0;
robot_pid=0;
loadlort_pid=0;
gateway_pid=0;
#########
#检查相关服务器是否启动成功
#说明:
#使用JDK自带的JPS命令及grep命令组合,准确查找pid
#jps 加 l 参数,表示显示java的完整包路径
#使用awk,分割出pid
- 我的spring学习笔记5-如何使用ApplicationContext替换BeanFactory
aijuans
Spring 3 系列
如何使用ApplicationContext替换BeanFactory?
package onlyfun.caterpillar.device;
import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.xml.XmlBeanFactory;
import
- Linux 内存使用方法详细解析
annan211
linux内存Linux内存解析
来源 http://blog.jobbole.com/45748/
我是一名程序员,那么我在这里以一个程序员的角度来讲解Linux内存的使用。
一提到内存管理,我们头脑中闪出的两个概念,就是虚拟内存,与物理内存。这两个概念主要来自于linux内核的支持。
Linux在内存管理上份为两级,一级是线性区,类似于00c73000-00c88000,对应于虚拟内存,它实际上不占用
- 数据库的单表查询常用命令及使用方法(-)
百合不是茶
oracle函数单表查询
创建数据库;
--建表
create table bloguser(username varchar2(20),userage number(10),usersex char(2));
创建bloguser表,里面有三个字段
&nbs
- 多线程基础知识
bijian1013
java多线程threadjava多线程
一.进程和线程
进程就是一个在内存中独立运行的程序,有自己的地址空间。如正在运行的写字板程序就是一个进程。
“多任务”:指操作系统能同时运行多个进程(程序)。如WINDOWS系统可以同时运行写字板程序、画图程序、WORD、Eclipse等。
线程:是进程内部单一的一个顺序控制流。
线程和进程
a. 每个进程都有独立的
- fastjson简单使用实例
bijian1013
fastjson
一.简介
阿里巴巴fastjson是一个Java语言编写的高性能功能完善的JSON库。它采用一种“假定有序快速匹配”的算法,把JSON Parse的性能提升到极致,是目前Java语言中最快的JSON库;包括“序列化”和“反序列化”两部分,它具备如下特征:
- 【RPC框架Burlap】Spring集成Burlap
bit1129
spring
Burlap和Hessian同属于codehaus的RPC调用框架,但是Burlap已经几年不更新,所以Spring在4.0里已经将Burlap的支持置为Deprecated,所以在选择RPC框架时,不应该考虑Burlap了。
这篇文章还是记录下Burlap的用法吧,主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
- 【Mahout一】基于Mahout 命令参数含义
bit1129
Mahout
1. mahout seqdirectory
$ mahout seqdirectory
--input (-i) input Path to job input directory(原始文本文件).
--output (-o) output The directory pathna
- linux使用flock文件锁解决脚本重复执行问题
ronin47
linux lock 重复执行
linux的crontab命令,可以定时执行操作,最小周期是每分钟执行一次。关于crontab实现每秒执行可参考我之前的文章《linux crontab 实现每秒执行》现在有个问题,如果设定了任务每分钟执行一次,但有可能一分钟内任务并没有执行完成,这时系统会再执行任务。导致两个相同的任务在执行。
例如:
<?
//
test
.php
- java-74-数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
bylijinnan
java
public class OcuppyMoreThanHalf {
/**
* Q74 数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
* two solutions:
* 1.O(n)
* see <beauty of coding>--每次删除两个不同的数字,不改变数组的特性
* 2.O(nlogn)
* 排序。中间
- linux 系统相关命令
candiio
linux
系统参数
cat /proc/cpuinfo cpu相关参数
cat /proc/meminfo 内存相关参数
cat /proc/loadavg 负载情况
性能参数
1)top
M:按内存使用排序
P:按CPU占用排序
1:显示各CPU的使用情况
k:kill进程
o:更多排序规则
回车:刷新数据
2)ulimit
ulimit -a:显示本用户的系统限制参
- [经营与资产]保持独立性和稳定性对于软件开发的重要意义
comsci
软件开发
一个软件的架构从诞生到成熟,中间要经过很多次的修正和改造
如果在这个过程中,外界的其它行业的资本不断的介入这种软件架构的升级过程中
那么软件开发者原有的设计思想和开发路线
- 在CentOS5.5上编译OpenJDK6
Cwind
linuxOpenJDK
几番周折终于在自己的CentOS5.5上编译成功了OpenJDK6,将编译过程和遇到的问题作一简要记录,备查。
0. OpenJDK介绍
OpenJDK是Sun(现Oracle)公司发布的基于GPL许可的Java平台的实现。其优点:
1、它的核心代码与同时期Sun(-> Oracle)的产品版基本上是一样的,血统纯正,不用担心性能问题,也基本上没什么兼容性问题;(代码上最主要的差异是
- java乱码问题
dashuaifu
java乱码问题js中文乱码
swfupload上传文件参数值为中文传递到后台接收中文乱码 在js中用setPostParams({"tag" : encodeURI( document.getElementByIdx_x("filetag").value,"utf-8")});
然后在servlet中String t
- cygwin很多命令显示command not found的解决办法
dcj3sjt126com
cygwin
cygwin很多命令显示command not found的解决办法
修改cygwin.BAT文件如下
@echo off
D:
set CYGWIN=tty notitle glob
set PATH=%PATH%;d:\cygwin\bin;d:\cygwin\sbin;d:\cygwin\usr\bin;d:\cygwin\usr\sbin;d:\cygwin\us
- [介绍]从 Yii 1.1 升级
dcj3sjt126com
PHPyii2
2.0 版框架是完全重写的,在 1.1 和 2.0 两个版本之间存在相当多差异。因此从 1.1 版升级并不像小版本间的跨越那么简单,通过本指南你将会了解两个版本间主要的不同之处。
如果你之前没有用过 Yii 1.1,可以跳过本章,直接从"入门篇"开始读起。
请注意,Yii 2.0 引入了很多本章并没有涉及到的新功能。强烈建议你通读整部权威指南来了解所有新特性。这样有可能会发
- Linux SSH免登录配置总结
eksliang
ssh-keygenLinux SSH免登录认证Linux SSH互信
转载请出自出处:http://eksliang.iteye.com/blog/2187265 一、原理
我们使用ssh-keygen在ServerA上生成私钥跟公钥,将生成的公钥拷贝到远程机器ServerB上后,就可以使用ssh命令无需密码登录到另外一台机器ServerB上。
生成公钥与私钥有两种加密方式,第一种是
- 手势滑动销毁Activity
gundumw100
android
老是效仿ios,做android的真悲催!
有需求:需要手势滑动销毁一个Activity
怎么办尼?自己写?
不用~,网上先问一下百度。
结果:
http://blog.csdn.net/xiaanming/article/details/20934541
首先将你需要的Activity继承SwipeBackActivity,它会在你的布局根目录新增一层SwipeBackLay
- JavaScript变换表格边框颜色
ini
JavaScripthtmlWebhtml5css
效果查看:http://hovertree.com/texiao/js/2.htm代码如下,保存到HTML文件也可以查看效果:
<html>
<head>
<meta charset="utf-8">
<title>表格边框变换颜色代码-何问起</title>
</head>
<body&
- Kafka Rest : Confluent
kane_xie
kafkaRESTconfluent
最近拿到一个kafka rest的需求,但kafka暂时还没有提供rest api(应该是有在开发中,毕竟rest这么火),上网搜了一下,找到一个Confluent Platform,本文简单介绍一下安装。
这里插一句,给大家推荐一个九尾搜索,原名叫谷粉SOSO,不想fanqiang谷歌的可以用这个。以前在外企用谷歌用习惯了,出来之后用度娘搜技术问题,那匹配度简直感人。
环境声明:Ubu
- Calender不是单例
men4661273
单例Calender
在我们使用Calender的时候,使用过Calendar.getInstance()来获取一个日期类的对象,这种方式跟单例的获取方式一样,那么它到底是不是单例呢,如果是单例的话,一个对象修改内容之后,另外一个线程中的数据不久乱套了吗?从试验以及源码中可以得出,Calendar不是单例。
测试:
Calendar c1 =
- 线程内存和主内存之间联系
qifeifei
java thread
1, java多线程共享主内存中变量的时候,一共会经过几个阶段,
lock:将主内存中的变量锁定,为一个线程所独占。
unclock:将lock加的锁定解除,此时其它的线程可以有机会访问此变量。
read:将主内存中的变量值读到工作内存当中。
load:将read读取的值保存到工作内存中的变量副本中。
- schedule和scheduleAtFixedRate
tangqi609567707
javatimerschedule
原文地址:http://blog.csdn.net/weidan1121/article/details/527307
import java.util.Timer;import java.util.TimerTask;import java.util.Date;
/** * @author vincent */public class TimerTest {
- erlang 部署
wudixiaotie
erlang
1.如果在启动节点的时候报这个错 :
{"init terminating in do_boot",{'cannot load',elf_format,get_files}}
则需要在reltool.config中加入
{app, hipe, [{incl_cond, exclude}]},
2.当generate时,遇到:
ERROR