计算机辅助药物设计的基本原理是什么

 

  计算机辅助 药物设计的基本方法

21世纪 新药 研究的热点将集中于先导化合物的发掘与设计,其中使用计算机辅助设计是先导化合物设计的重要方法之一。计算机辅助药物设计是 应用量子力学、分子动力学、构效关系等基础理论数据研究药物对酶、受体等的作用的药效模型,从而达到药物设计之目的。

计算机辅助药物设计的方法始于1980年代早期。当今,随着人类 基因组计划的完成、蛋白组学的迅猛发展,以及大量与人类疾病相关基因的发现,药物作用的靶标分子急剧增加;同时,在计算机 技术推动下,计算机药物辅助设计在近几年取得了巨大的 进展。在我国,中科院 上海药物所承担的国家863 项目“基于 蛋白质和核酸三维结构知识的药物设计”也致力于该领域的研究发展和改进药物分子设计的理论计算方法,并编制相应的 软件,对一系列具有重要的药理作用的药物进行了三维定量构效关系和计算辅助药物设计的理论研究,发现了一些活性超过左旋氧氟沙星的化合物和活性超过银杏内酯的化合物。

为了便于公众了解计算机辅助药物设计的基本原理与方法,以及该领域的最新的进展,本文根据现有的相关 文献对此作一综述。

计算机辅助药物设计的一般原理是,首先通过X-单晶衍射技等技术获得受体大分子结合部位的结构,并且采用分子模拟软件分析结合部位的结构性质,如静电场、疏水场、氢键作用位点分布等信息。然后再运用 数据库搜寻或者全新药物分子设计技术,识别得到分子形状和理化性质与受体作用位点相匹配的分子,合成并测试这些分子的 生物活性,经过几轮循环,即可以发现新的先导化合物。因此,计算机辅助药物设计大致包括活性位点分析法、数据库搜寻、全新药物设计。

1.活性位点分析法
该方法可以用来探测与生物大分子的活性位点较好地相互作用的原子或者基团。用于分析的探针可以是一些简单的分子或者碎片,例如水或者苯环,通过分析探针与活性位点的相互作用情况,最终可以找到这些分子或碎片在活性部位中的可能结合位置。由活性位点分析得到的有关受体结合的信息对于全新药物的设计具有指导性。目前,活性位点分析软件有DRID、GREEN、HSITE等。另外还有一些基于蒙特卡罗、模拟退火技术的软件如MCSS、HINT、BUCKETS等。

其中,GRID由Goodford研究小组开发,其基本原理是将受体蛋白的活性部位划分为有规则的网格点,将探针分子(水分子或甲基等)放置在这些网格点上,采用分子力场方法计算探针分子与受体活性部位各原子的相互作用能,这样便获得探针分子与受体活性部位相互作用的分布情况,从中可发现最佳作用位点。GRID最初运算的例子是用水分子作为探针分子,搜寻到了二氢叶酸还原酶(DHFR)活性部位中水的结合位点以及抑制剂的氢键作用位点。由此软件成功设计的药物有抗A型感冒病毒药物4-胍基Neu5Ac2en(GG167, RelenzaTM)。该化合物有很强的抗感冒病毒能力,克服了以往抗感冒病毒药物的耐药性缺陷,具有很好的市场前景。

MCSS是Miranker和Karplus在CHARMM力场基础上发展而来,它的基本要点是在运用 CHARMM力场进行分子动力学模拟时,取消溶剂分子间的非键相互作用。这样,在分子动力学模拟时,溶剂在能量合适的区域叠合在一起,从而提高了搜寻溶剂分子与受体分子结合区域的效率。小分子碎片(如水和苯分子)可当作溶剂分子,运用上述动力学方法搜寻出分子碎片与受体的结合区域,然后对每个碎片选择100-1000个拷贝,在低能碎片结合域进行能量优化。在最后的能量搜寻过程中,可以用随机取样或网格点的方法来实施。搜寻时每个碎片的各个拷贝可以作刚性转动,最后直接比较每个碎片各个拷贝与受体的结合能,以此选择碎片的最佳作用位点。2001年Adlington等利用MCSS对前列腺特异性免疫抗原(PSA)的活性位点进行了详细分析,以此对已有的PSA抑制剂进行结构优化,从而得到了迄今为止活性最高的PSA抑制剂。

2. 数据库搜寻
目前数据库搜寻方法分为两类。一类是基于配体的,即根据药效基团模型进行三维结构数据库搜寻。该类方法一般需先建立一系列活性分子的药效构象,抽提出共有的药效基团,进而在现有的数据库中寻找符合药效基团模型的化合物。该类方法中比较著名的软件有Catalyst和Unity,而以前者应用更普遍。另一类方法是基于受体的,也称为分子对接法,即将小分子配体对接到受体的活性位点,并搜寻其合理的取向和构象,使得配体与受体的形状和相互作用的匹配最佳。在药物设计中,分子对接方法主要用来从化合物数据库中搜寻与受体生物大分子有较好亲和力的小分子,从而发现全新的先导化合物。分子对接由于从整体上考虑配体与受体的结合效果,所以能较好地避免其他方法中容易出现的局部作用较好,整体结合欠佳的情况。目前具代表性的分子对接软件主要有 DOCK、F1exX和GOLD。

DOCK由Kuntz小组于1982年开发,最新版本为DOCK 5.0。DOCK的开发经历了一个由简单到复杂的过程:DOCK1.0考虑的是配体与受体间的刚性形状对接;DOCK2.0引入了“分而治之”算法,提高了计算速度;DOCK 3.0采用分子力场势能函数作为评价函数;DOCK 3.5引入了打分函数优化以及 化学性质匹配等;DOCK4.0开始考虑配体的柔性;DOCK 5.0在前面版本基础上,采用C++语言重新编程实现,并进一步引入GB/SA打分。DOCK程序现已成功地应用于药物分子设计领域。 Kuntz等利用用DOCK程序研究HIV-1蛋白酶,根据分子相似性对剑桥晶体数据库进行搜寻,得到化合物haloperidol,通过测试,其对HIV-1蛋白酶的Ki值为100μmol/L;进一步的结构改造得到化合物thioletal,其IC50高达1 5μmol/L。DesJarlais利用DOCK程序的一个改进版target-DOCK搜寻HIV-1蛋白酶抑制剂,得到一系列HIV-1蛋白酶抑制剂,其中活性最高的化合物其Ki值为7μmol/L。

F1exX是一种快速、精确的柔性对接算法,在对接时考虑了配体分子的许多构象。F1exX首先在配体分子中选择一个核心部分,并将其对接到受体的活性部位,然后再通过树搜寻方法连接其余片断。F1exX的评价函数采用改进的Bh鰉结合自由能函数。F1exX的对接算法建立在逐步构造策略的基础之上,分以下三步:第一步是选择配体的一个连接基团,称为核心基团;第二步将核心基团放置于活性部位,此时不考虑配体的其他部分;最后一步称为构造,通过在已放置好的核心基团上逐步增加其他基团,构造出完整的配体分子。F1exX对接一个典型的药物分子大约需要3分钟,表明它可用于中等规模的三维数据库搜寻;此外,由于其采用了 经验结合自由能函数进行评价,结果可能要优于以相互作用能为评价函数的分子对接方法。因此,F1exX是一个非常有前途的药物设计方法,近年来发展迅速。

3.全新药物设计
数据库搜寻技术在药物设计中广为应用,该方法发现的化合物大多可以直接购买得到,即使部分化合物不能直接购买得到,其合成路线也较为成熟,可以从专利或文献中查得,这都大大加快了先导化合物的发现速度。但是,数据库搜寻得到的化合物通常都是已知化合物,而非新颖结构。近年来,全新药物设计越来越受到人们的重视,它根据受体活性部位的形状和性质要求,让计算机自动构建出形状、性质互补的新分子,该新分子能与受体活性部位很好地契合,从而有望成为新的先导化合物;它通常能提出一些新的思想和结构类型,但对所设计的化合物需要进行合成,有时甚至是全合成。全新药物设计方法出现的时间虽然不长,但发展极为迅速,现已开发出一批实用性较强的软件,其主要软件有LUDI、Leapfrog、GROW、SPROU以及 北京 大学来鲁华等开发的LigBuilder等,其中LUDI最为常用。

LUDI是由Bh鰉开发的进行全新药物设计的有力工具,已广泛地被制药公司和 科研机构使用,其特点是以蛋白质三维结构为基础,通过化合物片段自动生长的方法产生候选的药物先导化合物。它可根据用户确定好的蛋白质受体结合部位的几何形状和物理化学特征(氢键形成能力、疏水作用位点),通过对已有数据库中化合物的筛选并在此基础上自动生长或连接其他化合物的形式,产生大量候选先导化合物并按评估的分值大小排列,供下一步筛选;可以对已知的药物分子进行修改,如添加/去除基团、官能团之间的连接等。在受体蛋白质结构未知的情况下,此模块也可以根据多个已知的同系化合物结构的叠合确定功能团,再根据功能团的空间排列和理化性质推测可能的蛋白质受体结合部位特征,根据此特征进行新型药物设计。目前研究人员利用LUDI设计出数十个针对不同疾病的活性化合物。

【参考文献】
1. 中国科技成果库(CSTAD): http://www.wanfangdata.com.cn
2.宋云龙等 基于结构的计算机辅助药物设计方法学与应用研究,药学进展.2002,26(6).-359-364
3.陈凯先等 计算机辅助药物设计——原理、方法及运用,上海 科学技术出版社,2000
4.Von Itzstein M, Wu W Y et al. Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature, 1993, 363: 418-423
5.Adlington R M, Baldwin J E et al. Design, synthesis, and proposed active site binding analysis of monocylic 2-azetidinone inhibitors of prostate specific antigen. J Med Chem, 2001, 44(10):1491-1508
6.Leapfrog. Tripos Associates, St Louis, MO, USA
参考资料: http://www.istis.cn/hykjqb/wenzhang/list_n.asp?id=574sid=1

你可能感兴趣的:(数据库,生物,网格,算法,binding,优化)