运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制 。
实现 LRUCache 类:
LRUCache(int capacity) 以正整数作为容量 capacity 初始化 LRU 缓存
int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1 。
void put(int key, int value) 如果关键字已经存在,则变更其数据值;如果关键字不存在,则插入该组「关键字-值」。当缓存容量达到上限时,它应该在写入新数据之前删除最久未使用的数据值,从而为新的数据值留出空间。(进阶:你是否可以在 O(1) 时间复杂度内完成这两种操作?)
示例:
输入
["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
输出
[null, null, null, 1, null, -1, null, -1, 3, 4]
解释
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // 缓存是 {1=1}
lRUCache.put(2, 2); // 缓存是 {1=1, 2=2}
lRUCache.get(1); // 返回 1
lRUCache.put(3, 3); // 该操作会使得关键字 2 作废,缓存是 {1=1, 3=3}
lRUCache.get(2); // 返回 -1 (未找到)
lRUCache.put(4, 4); // 该操作会使得关键字 1 作废,缓存是 {4=4, 3=3}
lRUCache.get(1); // 返回 -1 (未找到)
lRUCache.get(3); // 返回 3
lRUCache.get(4); // 返回 4
来源:力扣(LeetCode)链接:https://leetcode-cn.com/problems/lru-cache
LRU 的全称是 Least Recently Used,也就是说我们认为最近使用过的数据应该是是「有用的」,很久都没用过的数据应该是无用的,内存满了就优先删那些很久没用过的数据。
分析操作过程,要让 put
和 get
方法的时间复杂度为 O(1),我们可以总结出 cache
这个数据结构必要的条件:
1、显然 cache
中的元素必须有时序,以区分最近使用的和久未使用的数据,当容量满了之后要删除最久未使用的那个元素腾位置。
2、我们要在 cache
中快速找某个 key
是否已存在并得到对应的 val
;
3、每次访问 cache
中的某个 key
,需要将这个元素变为最近使用的,也就是说 cache
要支持在任意位置快速插入和删除元素。
那么,什么数据结构同时符合上述条件呢?哈希表查找快,但是数据无固定顺序;链表有顺序之分,插入删除快,但是查找慢。所以结合一下,形成一种新的数据结构:哈希链表 LinkedHashMap
。
LRU 缓存算法的核心数据结构就是哈希链表,双向链表和哈希表的结合体。
借助这个结构,我们来逐一分析上面的 3 个条件:
1、如果我们每次默认从链表尾部添加元素,那么显然越靠尾部的元素就是最近使用的,越靠头部的元素就是最久未使用的。
2、对于某一个 key
,我们可以通过哈希表快速定位到链表中的节点,从而取得对应 val
。
3、链表显然是支持在任意位置快速插入和删除的,改改指针就行。只不过传统的链表无法按照索引快速访问某一个位置的元素,而这里借助哈希表,可以通过 key
快速映射到任意一个链表节点,然后进行插入和删除。
思路参考:https://labuladong.gitbook.io/algo/shu-ju-jie-gou-xi-lie/shou-ba-shou-she-ji-shu-ju-jie-gou/lru-suan-fa
class LRUCache {
int cap;
LinkedHashMap cache = new LinkedHashMap<>();
public LRUCache(int capacity) {
this.cap = capacity;
}
public int get(int key) {
// 如果找不到就返回-1
if (!cache.containsKey(key)) {
return -1;
}
int val = cache.get(key);
// 把当前key设置到最后(代表最近访问)
makeRecently(key);
return val;
}
public void put(int key, int value) {
// 如果原来有,修改数据,并放到最后,代表最近访问
if (cache.containsKey(key)) {
cache.put(key, value);
makeRecently(key);
return;
}
// 如果缓存存满了,删除头部元素(最长时间没访问的)
if (cache.size() >= this.cap) {
int oldKey = cache.keySet().iterator().next();
cache.remove(oldKey);
}
// 保存数据
cache.put(key, value);
}
private void makeRecently(int key) {
// 删除原来的节点,再重新加入
int val = cache.remove(key);
cache.put(key, val);
}
}
/**
* Your LRUCache object will be instantiated and called as such:
* LRUCache obj = new LRUCache(capacity);
* int param_1 = obj.get(key);
* obj.put(key,value);
*/