二叉树的操作大全

文章目录

  • 1.通过前序遍历数组"ABD##E#H##CF##G##"构建二叉树
  • 2.前序遍历
  • 3.中序遍历
  • 4.后序遍历
  • 5.层序遍历
  • 6.二叉树结点个数及第k层结点个数
  • 7.查找为x的结点
  • 8.叶子结点个数
  • 9.销毁二叉树(二级指针)
  • 10.判断是否为完全二叉树
  • 测试代码及运行结果


1.通过前序遍历数组"ABD##E#H##CF##G##"构建二叉树

BTNode* createNode(BTDataType n)
{
	BTNode* NewNode = (BTNode*)malloc(sizeof(BTNode));
	NewNode->data = n;
	NewNode->left = NULL;
	NewNode->right = NULL;
	return NewNode;
}


// 通过前序遍历的数组"ABD##E#H##CF##G##"构建二叉树
BTNode* BinaryTreeCreate(BTDataType* a, int* pi)
{
	if (a[*pi] == '#')
	{
		(*pi)++;
		return NULL;
	}
	BTNode* root = createNode(a[(*pi)++]);
	root->left = BinaryTreeCreate(a, pi);
	root->right = BinaryTreeCreate(a, pi);
	return root;
}

2.前序遍历

//前序遍历
void BinaryTreePrevOrder(BTNode* root){
	if (root == NULL)
		return;

	printf("%c ", root->data);
	BinaryTreePrevOrder(root->left);
	BinaryTreePrevOrder(root->right);
}

3.中序遍历

//中序
void BinaryTreeInOrder(BTNode* root) {
	if (root == NULL)
		return;

	BinaryTreeInOrder(root->left);
	printf("%c ", root->data);
	BinaryTreeInOrder(root->right);
}

4.后序遍历

//后序
void BinaryTreePostOrder(BTNode* root) {
	if (root == NULL)
		return;

	BinaryTreePostOrder(root->left);
	BinaryTreePostOrder(root->right);
	printf("%c ", root->data);
}

5.层序遍历

这里需要用到队列来存储结点

//层序遍历
void BinaryTreeLevelOrder(BTNode* root)
{
	Que q;
	QueueInit(&q);

	if (root)
		QueuePush(&q, root);

	while (!QueueEmpty(&q))
	{
		BTNode* front = QueueFront(&q);
		printf("%c ", front->data);
		if (front->left)
			QueuePush(&q, front->left);

		if (front->right)
			QueuePush(&q, front->right);

		QueuePop(&q);
	}
	printf("\n");

	QueueDestroy(&q);
}

6.二叉树结点个数及第k层结点个数

其中第k层结点个数相当于第k减一层的第一层,依次递归

// 二叉树节点个数
int BinaryTreeSize(BTNode* root)
{
	if (root == NULL)
		return 0;
	return 1 + BinaryTreeSize(root->left) + BinaryTreeSize(root->right);
}

// 二叉树第k层节点个数
int BinaryTreeLevelKSize(BTNode* root, int k)
{
	assert(k > 0);
	if (root == NULL)
		return 0;
	if (k == 1)
		return 1;
	return BinaryTreeLevelKSize(root->left, k - 1) + BinaryTreeLevelKSize(root->right, k - 1);

}

7.查找为x的结点

// 二叉树查找值为x的节点
BTNode* BinaryTreeFind(BTNode* root, BTDataType x)
{
	if (root == NULL)
		return NULL;
	if (root->data == x)
		return root;
	BTNode* ans = NULL;
	ans = BinaryTreeFind(root->left, x);
	if (ans)
		return ans;
	ans = BinaryTreeFind(root->right, x);
	if (ans)
		return ans;
	return NULL;
}

8.叶子结点个数

// 二叉树叶子节点个数
int BinaryTreeLeafSize(BTNode* root)
{
	if (root == NULL)
		return 0;
	if (root->left == NULL && root->right == NULL)
		return 1;
	return BinaryTreeLeafSize(root->left) + BinaryTreeLeafSize(root->right);
}

9.销毁二叉树(二级指针)

//销毁二叉树
void BinaryTreeDestory(BTNode** root)
{
	if (*root == NULL)
		return;
	BinaryTreeDestory(&(*root)->left);
	BinaryTreeDestory(&(*root)->right);
	free(*root);
	*root = NULL;
}

10.判断是否为完全二叉树

// 判断二叉树是否是完全二叉树
bool BinaryTreeComplete(BTNode* root)
{
	Que q;
	QueueInit(&q);

	if (root)
		QueuePush(&q, root);

	while (!QueueEmpty(&q))
	{
		BTNode* front = QueueFront(&q);
		QueuePop(&q);

		if (front != NULL)
		{
			QueueDestroy(&q);
			return false;
		}
	}

	QueueDestroy(&q);
	return true;
}

测试代码及运行结果

#include "tree.h"

int main() {
    BTDataType a[] = { 'A','B','D','#','#','E','#','H','#','#','C','F','#','#','G','#','#' };
    int j = 0;
    int k = 2;
    BTDataType x = 'j';
    BTNode* root = BinaryTreeCreate(a, &j);

    printf("Preorder Traversal of the Binary Tree: ");
    BinaryTreePrevOrder(root);
    printf("\nInorder Traversal of the Binary Tree: ");
    BinaryTreeInOrder(root);
    printf("\nPostorder Traversal of the Binary Tree: ");
    BinaryTreePostOrder(root);
    int ret1 = BinaryTreeSize(root);
    printf("\n节点数为%d\n", ret1);
    int ret2 = BinaryTreeLevelKSize(root, k);
    printf("第k层节点数为%d\n", ret2);
    BTNode* ret3 = BinaryTreeFind(root, x);
    if (ret3 == NULL)
        printf("没找到\n");
    else
        printf("找到了\n");
    int ret4 = BinaryTreeLeafSize(root);
    printf("叶子节点数为%d\n", ret4);
    printf("Levelorder Traversal of the Binary Tree: ");
    BinaryTreeLevelOrder(root);
    int ret5 = BinaryTreeComplete(root);
    printf("\n%d", ret5);
    return 0;
}

二叉树的操作大全_第1张图片

你可能感兴趣的:(数据结构,算法)