上篇扒了 HPA 的源码,但是没深入细节,今天往细节深入。
为什么要有 Informer?
Kubernetes 中的持久化数据保存在 etcd中,各个组件并不会直接访问 etcd,而是通过 api-server暴露的 RESTful 接口对集群进行访问和控制。
资源的控制器(图中右侧灰色的部分)读取数据也并不会直接从 api-server 中获取资源信息(这样会增加 api-server 的压力),而是从其“本地缓存”中读取。这个“本地缓存”只是表象的存在,加上缓存的同步逻辑就是今天要是说的Informer
(灰色区域中的第一个蓝色块)所提供的功能。
从图中可以看到 Informer 的几个组件:
- Reflector:与
api-server
交互,监听资源的变更。 - Delta FIFO Queue:增量的 FIFO 队列,保存 Reflector 监听到的资源变更(简单的封装)。
- Indexer:Informer 的本地缓存,FIFO 队列中的数据根据不同的变更类型,在该缓存中进行操作。
- Local Store:
上篇 提到了水平自动伸缩的控制器HorizontalController
,其构造方法就需要提供 Informer
。
//pkg/controller/podautoscaler/horizontal.go
type HorizontalController struct {
scaleNamespacer scaleclient.ScalesGetter
hpaNamespacer autoscalingclient.HorizontalPodAutoscalersGetter
mapper apimeta.RESTMapper
replicaCalc *ReplicaCalculator
eventRecorder record.EventRecorder
downscaleStabilisationWindow time.Duration
hpaLister autoscalinglisters.HorizontalPodAutoscalerLister
hpaListerSynced cache.InformerSynced
podLister corelisters.PodLister
podListerSynced cache.InformerSynced
queue workqueue.RateLimitingInterface
recommendations map[string][]timestampedRecommendation
}
func NewHorizontalController(
evtNamespacer v1core.EventsGetter,
scaleNamespacer scaleclient.ScalesGetter,
hpaNamespacer autoscalingclient.HorizontalPodAutoscalersGetter,
mapper apimeta.RESTMapper,
metricsClient metricsclient.MetricsClient,
//从HorizontalPodAutoscalerInformer 获取hpa 实例信息
hpaInformer autoscalinginformers.HorizontalPodAutoscalerInformer,
//从PodInformer 中获取 pod 信息
podInformer coreinformers.PodInformer,
resyncPeriod time.Duration,
downscaleStabilisationWindow time.Duration,
tolerance float64,
cpuInitializationPeriod,
delayOfInitialReadinessStatus time.Duration,
) *HorizontalController {
......
hpaInformer.Informer().AddEventHandlerWithResyncPeriod( //添加事件处理器
cache.ResourceEventHandlerFuncs{
AddFunc: hpaController.enqueueHPA,
UpdateFunc: hpaController.updateHPA,
DeleteFunc: hpaController.deleteHPA,
},
resyncPeriod,
)
......
}
type HorizontalPodAutoscalerInformer interface {
Informer() cache.SharedIndexInformer
Lister() v1.HorizontalPodAutoscalerLister
}
HorizontalPodAutoscalerInformer
的实例化方法中就出现了今天的正主cache.NewSharedIndexInformer()
。
//staging/src/k8s.io/client-go/informers/autoscaling/v1/horizontalpodautoscaler.go
func NewFilteredHorizontalPodAutoscalerInformer(client kubernetes.Interface, namespace string, resyncPeriod time.Duration, indexers cache.Indexers, tweakListOptions internalinterfaces.TweakListOptionsFunc) cache.SharedIndexInformer {
return cache.NewSharedIndexInformer(
//用于 list 和 watch api-server 中的资源。比如用来创建 Reflector
&cache.ListWatch{
ListFunc: func(options metav1.ListOptions) (runtime.Object, error) {
if tweakListOptions != nil {
tweakListOptions(&options)
}
//使用 HPA API 获取 HPA资源
return client.AutoscalingV1().HorizontalPodAutoscalers(namespace).List(options)
},
WatchFunc: func(options metav1.ListOptions) (watch.Interface, error) {
if tweakListOptions != nil {
tweakListOptions(&options)
}
//使用 HPA API 监控 HPA资源
return client.AutoscalingV1().HorizontalPodAutoscalers(namespace).Watch(options)
},
},
&autoscalingv1.HorizontalPodAutoscaler{},
resyncPeriod,
indexers,
)
}
初始化
Informer
//staging/src/k8s.io/client-go/tools/cache/index.go
type Indexers map[string]IndexFunc
type IndexFunc func(obj interface{}) ([]string, error)
实例化 Indexers cache.Indexers{cache.NamespaceIndex: cache.MetaNamespaceIndexFunc}
//staging/src/k8s.io/client-go/tools/cache/shared_informer.go
// ListerWatcher 用于 list 和watch api-server 上的资源
//runtime.Object要监控的资源的运行时对象
//time.Duration同步的间隔时间
//Indexers 提供不同资源的索引数据的信息查询方法,如 namespace => MetaNamespaceIndexFunc
func NewSharedIndexInformer(lw ListerWatcher, objType runtime.Object, defaultEventHandlerResyncPeriod time.Duration, indexers Indexers) SharedIndexInformer {
realClock := &clock.RealClock{}
sharedIndexInformer := &sharedIndexInformer{
processor: &sharedProcessor{clock: realClock},
indexer: NewIndexer(DeletionHandlingMetaNamespaceKeyFunc, indexers), //初始化 Indexer
listerWatcher: lw,
objectType: objType,
resyncCheckPeriod: defaultEventHandlerResyncPeriod,
defaultEventHandlerResyncPeriod: defaultEventHandlerResyncPeriod,
cacheMutationDetector: NewCacheMutationDetector(fmt.Sprintf("%T", objType)),
clock: realClock,
}
return sharedIndexInformer
}
Indexer
Indexer
提供了本地缓存的实现:计算 key 和对数据进行控制(通过调用ThreadSafeStore
的接口)
type Indexer interface {
Store
Index(indexName string, obj interface{}) ([]interface{}, error)
IndexKeys(indexName, indexedValue string) ([]string, error)
ListIndexFuncValues(indexName string) []string
ByIndex(indexName, indexedValue string) ([]interface{}, error)
GetIndexers() Indexers
AddIndexers(newIndexers Indexers) error
}
Indexer
的创建
//staging/src/k8s.io/client-go/tools/cache/store.go
//keyFunc:key 的生成规则
//indexers:提供了索引资源的不同信息的访问方法,如用于查询命名空间的 namespace => MetaNamespaceIndexFunc
func NewIndexer(keyFunc KeyFunc, indexers Indexers) Indexer {
return &cache{
cacheStorage: NewThreadSafeStore(indexers, Indices{}),
keyFunc: keyFunc,
}
}
ThreadSafeStore
ThreadSafeStore提供了对存储的并发访问接口
注意事项:不能修改Get或List返回的任何内容,因为它不仅会破坏线程安全,还会破坏索引功能。
//staging/src/k8s.io/client-go/tools/cache/thread_safe_store.go
func NewThreadSafeStore(indexers Indexers, indices Indices) ThreadSafeStore {
return &threadSafeMap{
items: map[string]interface{}{},
indexers: indexers,
indices: indices,
}
}
type threadSafeMap struct {
lock sync.RWMutex
items map[string]interface{} //key => value
indexers Indexers //value 的信息的访问方法
indices Indices //索引
}
Reflector
Reflector
通过ListerWatcher
(API)与api-server
交互,对资源进行监控。将资源实例的创建、更新、删除等时间封装后保存在Informer
的FIFO 队列中。
//staging/src/k8s.io/client-go/tools/cache/reflector.go
func NewReflector(lw ListerWatcher, expectedType interface{}, store Store, resyncPeriod time.Duration) *Reflector {
return NewNamedReflector(naming.GetNameFromCallsite(internalPackages...), lw, expectedType, store, resyncPeriod)
}
// NewNamedReflector same as NewReflector, but with a specified name for logging
func NewNamedReflector(name string, lw ListerWatcher, expectedType interface{}, store Store, resyncPeriod time.Duration) *Reflector {
r := &Reflector{
name: name,
listerWatcher: lw,
store: store, //FIFO队列
period: time.Second,
resyncPeriod: resyncPeriod,
clock: &clock.RealClock{},
}
r.setExpectedType(expectedType)
return r
}
添加同步事件监听器
通过sharedIndexInformer#AddEventHandlerWithResyncPeriod()
注册事件监听器。
以前面的 HorizontalController为例,创建 informer 的时候添加了三个处理方法:AddFunc
、UpdateFunc
、DeleteFunc
。这三个方法的实现是将对应的元素的 key(固定格式 namespace/name
)从workequeue
中进行入队、出队的操作。(资源控制器监听了该 workqueue
)
运行
controller-manager
在通过InformerFactory
创建Informer
完成后,都会将新建的Informer
加入到InformerFactory
的一个map
中。
在controller-manager
在完成所有的控制器(各种Controller
,包括 CRD)后,会调用InformerFactory#Start()
来启动InformerFactory
的map
中的所有Informer
(调用Informer#Run()
方法)
sharedIndexInformer#Run()
//staging/src/k8s.io/client-go/tools/cache/shared_informer.go
func (s *sharedIndexInformer) Run(stopCh <-chan struct{}) {
defer utilruntime.HandleCrash()
//创建一个增量的 FIFO队列:DeltaFIFO
fifo := NewDeltaFIFO(MetaNamespaceKeyFunc, s.indexer)
cfg := &Config{
Queue: fifo,
ListerWatcher: s.listerWatcher,
ObjectType: s.objectType,
FullResyncPeriod: s.resyncCheckPeriod,
RetryOnError: false,
ShouldResync: s.processor.shouldResync,
Process: s.HandleDeltas,
}
//启动前的初始化,创建 Controller
func() {
s.startedLock.Lock()
defer s.startedLock.Unlock()
s.controller = New(cfg)
s.controller.(*controller).clock = s.clock
s.started = true
}()
processorStopCh := make(chan struct{})
var wg wait.Group
defer wg.Wait() // Wait for Processor to stop
defer close(processorStopCh) // Tell Processor to stop
wg.StartWithChannel(processorStopCh, s.cacheMutationDetector.Run)
wg.StartWithChannel(processorStopCh, s.processor.run)
//退出时的状态清理
defer func() {
s.startedLock.Lock()
defer s.startedLock.Unlock()
s.stopped = true // Don't want any new listeners
}()
//实行控制逻辑
s.controller.Run(stopCh)
}
controller#Run()
//staging/src/k8s.io/client-go/tools/cache/controller.go
func (c *controller) Run(stopCh <-chan struct{}) {
defer utilruntime.HandleCrash()
go func() {
<-stopCh
c.config.Queue.Close()
}()
//创建一个 Reflector,用于从 api-server list 和 watch 资源
r := NewReflector(
c.config.ListerWatcher,
c.config.ObjectType,
c.config.Queue,
c.config.FullResyncPeriod,
)
r.ShouldResync = c.config.ShouldResync
r.clock = c.clock
//为 controller 指定 Reflector
c.reflectorMutex.Lock()
c.reflector = r
c.reflectorMutex.Unlock()
var wg wait.Group
defer wg.Wait()
//执行Reflector#Run():会启动一个goroutine开始监控资源,将 watch 到的数据写入到queue(FIFO 队列)中
wg.StartWithChannel(stopCh, r.Run)
//持续从 queue(FIFO 队列) 获取数据并进行处理,处理的逻辑在sharedIndexInformer#HandleDeltas()
wait.Until(c.processLoop, time.Second, stopCh)
}
sharedIndexInformer#HandleDeltas()
//staging/src/k8s.io/client-go/tools/cache/shared_informer.go
func (s *sharedIndexInformer) HandleDeltas(obj interface{}) error {
s.blockDeltas.Lock()
defer s.blockDeltas.Unlock()
// from oldest to newest
for _, d := range obj.(Deltas) { //循环处理 FIFO 队列中取出的资源实例
switch d.Type {
case Sync, Added, Updated: //同步(后面详细解读)、新增、更新事件
isSync := d.Type == Sync
s.cacheMutationDetector.AddObject(d.Object)
if old, exists, err := s.indexer.Get(d.Object); err == nil && exists {
if err := s.indexer.Update(d.Object); err != nil { //如果 indexer 中已经存在,更掉用 update 方法进行更新
return err
}
//更新成功后发送“更新”通知:包含了新、旧资源实例
s.processor.distribute(updateNotification{oldObj: old, newObj: d.Object}, isSync)
} else {
//如果 indexer 中没有该资源实例,则放入 indexer 中
if err := s.indexer.Add(d.Object); err != nil {
return err
}
//添加成功后,发送“新增”通知:包含了新加的资源实例
s.processor.distribute(addNotification{newObj: d.Object}, isSync)
}
case Deleted: //删除事件
if err := s.indexer.Delete(d.Object); err != nil {//从 indexer 中删除
return err
}
//删除成功后,发送“删除通知”:包含了删除的资源实例
s.processor.distribute(deleteNotification{oldObj: d.Object}, false)
}
}
return nil
}
总结
Informer 的实现不算复杂,却在 Kubernetes 中很常见,每种资源的控制也都通过 Informer 来获取api-server
的资源实例的变更。