静态源码分析
objc_class 概况
struct objc_class : objc_object {
// Class ISA;
Class superclass;
cache_t cache; // formerly cache pointer and vtable
class_data_bits_t bits; // class_rw_t * plus custom rr/alloc flags
// ... 此处省略函数代码
}
- 从源码得知
objc_class
继承objc_object
,其中有一个isa 联合体结构8字节
- superclass 是一个
Class
是一个指向objc_class
的指针类型,8字节
结论1: 根据结构体内存排布得知,cache
的首地址在objec_object
首地址偏移16字节
的位置
cache_t 源码
struct cache_t {
#if CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_OUTLINED
explicit_atomic _buckets;
explicit_atomic _mask;
#elif CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_HIGH_16
explicit_atomic _maskAndBuckets;
mask_t _mask_unused;
// How much the mask is shifted by.
static constexpr uintptr_t maskShift = 48;
// Additional bits after the mask which must be zero. msgSend
// takes advantage of these additional bits to construct the value
// `mask << 4` from `_maskAndBuckets` in a single instruction.
static constexpr uintptr_t maskZeroBits = 4;
// The largest mask value we can store.
static constexpr uintptr_t maxMask = ((uintptr_t)1 << (64 - maskShift)) - 1;
// The mask applied to `_maskAndBuckets` to retrieve the buckets pointer.
static constexpr uintptr_t bucketsMask = ((uintptr_t)1 << (maskShift - maskZeroBits)) - 1;
// Ensure we have enough bits for the buckets pointer.
static_assert(bucketsMask >= MACH_VM_MAX_ADDRESS, "Bucket field doesn't have enough bits for arbitrary pointers.");
#elif CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_LOW_4
// _maskAndBuckets stores the mask shift in the low 4 bits, and
// the buckets pointer in the remainder of the value. The mask
// shift is the value where (0xffff >> shift) produces the correct
// mask. This is equal to 16 - log2(cache_size).
explicit_atomic _maskAndBuckets;
mask_t _mask_unused;
static constexpr uintptr_t maskBits = 4;
static constexpr uintptr_t maskMask = (1 << maskBits) - 1;
static constexpr uintptr_t bucketsMask = ~maskMask;
#else
#error Unknown cache mask storage type.
#endif
#if __LP64__
uint16_t _flags;
#endif
uint16_t _occupied;
public:
static bucket_t *emptyBuckets();
struct bucket_t *buckets();
mask_t mask();
mask_t occupied();
void incrementOccupied();
void setBucketsAndMask(struct bucket_t *newBuckets, mask_t newMask);
void initializeToEmpty();
unsigned capacity();
bool isConstantEmptyCache();
bool canBeFreed();
#if __LP64__
bool getBit(uint16_t flags) const {
return _flags & flags;
}
void setBit(uint16_t set) {
__c11_atomic_fetch_or((_Atomic(uint16_t) *)&_flags, set, __ATOMIC_RELAXED);
}
void clearBit(uint16_t clear) {
__c11_atomic_fetch_and((_Atomic(uint16_t) *)&_flags, ~clear, __ATOMIC_RELAXED);
}
#endif
#if FAST_CACHE_ALLOC_MASK
bool hasFastInstanceSize(size_t extra) const
{
if (__builtin_constant_p(extra) && extra == 0) {
return _flags & FAST_CACHE_ALLOC_MASK16;
}
return _flags & FAST_CACHE_ALLOC_MASK;
}
size_t fastInstanceSize(size_t extra) const
{
ASSERT(hasFastInstanceSize(extra));
if (__builtin_constant_p(extra) && extra == 0) {
return _flags & FAST_CACHE_ALLOC_MASK16;
} else {
size_t size = _flags & FAST_CACHE_ALLOC_MASK;
// remove the FAST_CACHE_ALLOC_DELTA16 that was added
// by setFastInstanceSize
return align16(size + extra - FAST_CACHE_ALLOC_DELTA16);
}
}
void setFastInstanceSize(size_t newSize)
{
// Set during realization or construction only. No locking needed.
uint16_t newBits = _flags & ~FAST_CACHE_ALLOC_MASK;
uint16_t sizeBits;
// Adding FAST_CACHE_ALLOC_DELTA16 allows for FAST_CACHE_ALLOC_MASK16
// to yield the proper 16byte aligned allocation size with a single mask
sizeBits = word_align(newSize) + FAST_CACHE_ALLOC_DELTA16;
sizeBits &= FAST_CACHE_ALLOC_MASK;
if (newSize <= sizeBits) {
newBits |= sizeBits;
}
_flags = newBits;
}
#else
bool hasFastInstanceSize(size_t extra) const {
return false;
}
size_t fastInstanceSize(size_t extra) const {
abort();
}
void setFastInstanceSize(size_t extra) {
// nothing
}
#endif
static size_t bytesForCapacity(uint32_t cap);
static struct bucket_t * endMarker(struct bucket_t *b, uint32_t cap);
void reallocate(mask_t oldCapacity, mask_t newCapacity, bool freeOld);
void insert(Class cls, SEL sel, IMP imp, id receiver);
static void bad_cache(id receiver, SEL sel, Class isa) __attribute__((noreturn, cold));
};
我们先把属性拎出来分别是
- _buckets: 一个指向结构体
bucket_t
的指针 - _mask:掩码,值为容量(capacity)-1,因为
capacity
为2^n,所以掩码的规律是高位为0
低位为1
的组合(00000111, 00001111, 00011111),可以用取&
运算来做hash算法。 - _flags:一些cache_t的标志写入其中,目前先不做考虑
- _occupied:大小为已存入的方法数量。
bucket_t 结构
struct bucket_t {
private:
// IMP-first is better for arm64e ptrauth and no worse for arm64.
// SEL-first is better for armv7* and i386 and x86_64.
#if __arm64__
explicit_atomic _imp;
explicit_atomic _sel;
#else
explicit_atomic _sel;
explicit_atomic _imp;
#endif
// Compute the ptrauth signing modifier from &_imp, newSel, and cls.
uintptr_t modifierForSEL(SEL newSel, Class cls) const {
return (uintptr_t)&_imp ^ (uintptr_t)newSel ^ (uintptr_t)cls;
}
// Sign newImp, with &_imp, newSel, and cls as modifiers.
uintptr_t encodeImp(IMP newImp, SEL newSel, Class cls) const {
if (!newImp) return 0;
#if CACHE_IMP_ENCODING == CACHE_IMP_ENCODING_PTRAUTH
return (uintptr_t)
ptrauth_auth_and_resign(newImp,
ptrauth_key_function_pointer, 0,
ptrauth_key_process_dependent_code,
modifierForSEL(newSel, cls));
#elif CACHE_IMP_ENCODING == CACHE_IMP_ENCODING_ISA_XOR
return (uintptr_t)newImp ^ (uintptr_t)cls;
#elif CACHE_IMP_ENCODING == CACHE_IMP_ENCODING_NONE
return (uintptr_t)newImp;
#else
#error Unknown method cache IMP encoding.
#endif
}
public:
inline SEL sel() const { return _sel.load(memory_order::memory_order_relaxed); }
inline IMP imp(Class cls) const {
uintptr_t imp = _imp.load(memory_order::memory_order_relaxed);
if (!imp) return nil;
#if CACHE_IMP_ENCODING == CACHE_IMP_ENCODING_PTRAUTH
SEL sel = _sel.load(memory_order::memory_order_relaxed);
return (IMP)
ptrauth_auth_and_resign((const void *)imp,
ptrauth_key_process_dependent_code,
modifierForSEL(sel, cls),
ptrauth_key_function_pointer, 0);
#elif CACHE_IMP_ENCODING == CACHE_IMP_ENCODING_ISA_XOR
return (IMP)(imp ^ (uintptr_t)cls);
#elif CACHE_IMP_ENCODING == CACHE_IMP_ENCODING_NONE
return (IMP)imp;
#else
#error Unknown method cache IMP encoding.
#endif
}
template
void set(SEL newSel, IMP newImp, Class cls);
};
把重要的东西拎出来:
- 两个属性:
_imp
和_sel
; - 两个方法:
sel()
和imp()
;
执行代码辅助分析
准备如下代码
@interface LGPerson : NSObject
@property (nonatomic, copy) NSString *lgName;
@property (nonatomic, strong) NSString *nickName;
- (void)sayHello;
- (void)sayCode;
- (void)sayMaster;
- (void)sayNB;
+ (void)sayHappy;
@end
@implementation LGPerson
- (void)sayHello{
NSLog(@"LGPerson say : %s",__func__);
}
- (void)sayCode{
NSLog(@"LGPerson say : %s",__func__);
}
- (void)sayMaster{
NSLog(@"LGPerson say : %s",__func__);
}
- (void)sayNB{
NSLog(@"LGPerson say : %s",__func__);
}
+ (void)sayHappy{
NSLog(@"LGPerson say : %s",__func__);
}
@end
int main(int argc, const char * argv[]) {
@autoreleasepool {
// insert code here...
LGPerson *p = [LGPerson alloc];
Class pClass = [LGPerson class];
[p sayHello];
[p sayCode];
[p sayMaster];
[p sayNB];
NSLog(@"%@",pClass);
}
return 0;
}
我们在[p sayHello];
加入断点运行,分析如下图
但我们运行到[p sayCode];
打印时
我们不妨通过
cache_t
里面的方法buckets ()
,以及进行下列分析
为什么我们不直接拿
cache_t
里面的_bucket
来操作呢,因为这个指针类型其实被explicit_atomic
修饰了,无法直接打印。接下来的调用sel()
方法亦是如此.
结论2:我们在cache
内的bucket
找到了我们的调用方法
深入分析cache_t缓存流程
cache_t
方法实现的文件中找到
具体流程为:
1、 计算当前缓存占用的数量
mask_t newOccupied = occupied() + 1;
2、执行条件:
- 如果当前未空缓存,也就是第一次进来: 申请开辟内存 容量为4
ALWAYS_INLINE
void cache_t::reallocate(mask_t oldCapacity, mask_t newCapacity, bool freeOld)
{
bucket_t *oldBuckets = buckets();
bucket_t *newBuckets = allocateBuckets(newCapacity);
// Cache's old contents are not propagated.
// This is thought to save cache memory at the cost of extra cache fills.
// fixme re-measure this
ASSERT(newCapacity > 0);
ASSERT((uintptr_t)(mask_t)(newCapacity-1) == newCapacity-1);
setBucketsAndMask(newBuckets, newCapacity - 1);
if (freeOld) {
cache_collect_free(oldBuckets, oldCapacity);
}
}
- 如果存入缓存后小于等于3/4,不做处理
- 如果前两个条件都不满足,则开始扩容;扩容规则为:放弃就缓存,新缓存大小为原来的2倍,并且重新梳理缓存
3、针对这一次的方法进行bucket内部存储