Class Model
class Model:
def __init__(self, data, target):
data_size = int(data.get_shape()[1])
target_size = int(target.get_shape()[1])
weight = tf.Variable(tf.truncated_normal([data_size, target_size]))
bias = tf.Variable(tf.constant(0.1, shape=[target_size]))
incoming = tf.matmul(data, weight) + bias
self._prediction = tf.nn.softmax(incoming)
cross_entropy = -tf.reduce_sum(target, tf.log(self._prediction))
self._optimize = tf.train.RMSPropOptimizer(0.03).minimize(cross_entropy)
mistakes = tf.not_equal(
tf.argmax(target, 1), tf.argmax(self._prediction, 1))
self._error = tf.reduce_mean(tf.cast(mistakes, tf.float32))
@property
def prediction(self):
return self._prediction
@property
def optimize(self):
return self._optimize
@property
def error(self):
return self._error
@property装饰器可以将类函数与其属性相关联。但是以上的方法可读性和复利用性太差。
Use property
class Model:
def __init__(self, data, target):
self.data = data
self.target = target
self._prediction = None
self._optimize = None
self._error = None
@property
def prediction(self):
if not self._prediction:
data_size = int(self.data.get_shape()[1])
target_size = int(self.target.get_shape()[1])
weight = tf.Variable(tf.truncated_normal([data_size, target_size]))
bias = tf.Variable(tf.constant(0.1, shape=[target_size]))
incoming = tf.matmul(self.data, weight) + bias
self._prediction = tf.nn.softmax(incoming)
return self._prediction
@property
def optimize(self):
if not self._optimize:
cross_entropy = -tf.reduce_sum(self.target, tf.log(self.prediction))
optimizer = tf.train.RMSPropOptimizer(0.03)
self._optimize = optimizer.minimize(cross_entropy)
return self._optimize
@property
def error(self):
if not self._error:
mistakes = tf.not_equal(
tf.argmax(self.target, 1), tf.argmax(self.prediction, 1))
self._error = tf.reduce_mean(tf.cast(mistakes, tf.float32))
return self._error
Emmm 存在lazy_loading 的问题 , 这里还不太理解。
Code is still a bit bloated due to the lazy loading logic
Lazy Property Decorator
import functools
def lazy_property(function):
attribute = '_cache_' + function.__name__
@property
@functools.wrap(function)
def decorator(self, attribute):
if not hasattr(self, attribute):
setattr(self, attribute, function(self))
return getattr(self , attribute)
return decorator
装饰器——以后翻译
通过这个装饰器可以简化模型
class Model:
def __init__(self, data, target):
self.data = data
self.target = target
self.prediction
self.optimize
self.error
@lazy_property
def prediction(self):
data_size = int(self.data.get_shape()[1])
target_size = int(self.target.get_shape()[1])
weight = tf.Variable(tf.truncated_normal([data_size, target_size]))
bias = tf.Variable(tf.constant(0.1, shape=[target_size]))
incoming = tf.matmul(self.data, weight) + bias
return tf.nn.softmax(incoming)
@lazy_property
def optimize(self):
cross_entropy = -tf.reduce_sum(self.target, tf.log(self.prediction))
optimizer = tf.train.RMSPropOptimizer(0.03)
return optimizer.minimize(cross_entropy)
@lazy_property
def error(self):
mistakes = tf.not_equal(
tf.argmax(self.target, 1), tf.argmax(self.prediction, 1))
return tf.reduce_mean(tf.cast(mistakes, tf.float32))
Note that we mention the properties in the constructor. This way the full graph is ensured to be defined by the time we run tf.initialize_variables().
定义计算图的范围
同过函数定义
import functools
def define_scope(function):
attribute = '_cache_' + function.__name__
@property
@functools.wraps(function)
def decorator(self):
if not hasattr(self, attribute):
with tf.variable_scope(function.__name__):
setattr(self, attribute, function(self))
return getattr(self, attribute)
return decorator
插入tf.variable_scope(function.name) 或者 tf.name_scope(function.name) 来定义Scope。
自定义Scope
def doublewrap(function):
"""
A decorator decorator, allowing to use the decorator to be used without parentheses
if not arguments are provided. All arguments must be optional.
"""
@functools.wraps(function)
def decorator(*args, **kwargs):
if len(args) == 1 and len(kwargs) == 0 and callable(args[0]):
return function(args[0])
else:
return lambda wrapee: function(wrapee, *args, **kwargs)
return decorator
@doublewrap
def define_scope(function, scope=None, *args, **kwargs):
"""
A decorator for functions that define TensorFlow operations. The wrapped
function will only be executed once. Subsequent calls to it will directly
return the result so that operations are added to the graph only once.
The operations added by the function live within a tf.variable_scope(). If
this decorator is used with arguments, they will be forwarded to the
variable scope. The scope name defaults to the name of the wrapped
function
"""
attribute = '_cache_' + function.__name__
name = scope or function.__name__
@property
@functools.wraps(function)
def decorator(self):
if not hasattr(self, attribute):
with tf.variable_scope(name, *args, **kwargs):
setattr(self, attribute, function(self))
return getattr(self, attribute)
return decorator
双层装饰器以保证无参时也可照常调用。
本文参考翻译自 Danijar Hafner