TensorRT简介

一. 什么是TensorRT

一般的深度学习项目,训练时为了加快速度,会使用多 GPU 分布式训练。但在部署推理时,为了降低成本,往往使用单个 GPU 机器甚至嵌入式平台(比如 NVIDIA Jetson)进行部署,部署端也要有与训练时相同的深度学习环境,如 caffe,TensorFlow 等。由于训练的网络模型可能会很大(比如,inception,resnet 等),参数很多,而且部署端的机器性能存在差异,就会导致推理速度慢,延迟高。这对于那些高实时性的应用场合是致命的,比如自动驾驶要求实时目标检测,目标追踪等。所以为了提高部署推理的速度,出现了很多轻量级神经网络,比如 squeezenet,mobilenet,shufflenet 等。基本做法都是基于现有的经典模型提出一种新的模型结构,然后用这些改造过的模型重新训练,再重新部署。

而 TensorRT 则是对训练好的模型进行优化。 TensorRT 就只是推理优化器。当你的网络训练完之后,可以将训练模型文件直接丢进 TensorRT中,而不再需要依赖深度学习框架(Caffe,TensorFlow 等),如下:

TensorRT简介_第1张图片

可以认为 TensorRT 是一个只有前向传播的深度学习框架,这个框架可以将 Caffe,TensorFlow 的网络模型解析,然后与 TensorRT 中对应的层进行一一映射,把其他框架的模型统一全部转换到 TensorRT 中,然后在 TensorRT 中可以针对 NVIDIA 自家 GPU 实施优化策略,并进行部署加速。

如果想了解更多关于 TensorRT 的介绍,可参考官网介绍

你可能感兴趣的:(深度学习,tensorrt)