上一篇我们一起读了ViT的论文(【ViT系列(1)】《AN IMAGE IS WORTH 16X16 WORDS:TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE》论文超详细解读(翻译+精读)),大致了解了这个模型,那么接下来这篇就来看一看代码是如何实现的。
本文会介绍两个版本,一个是论文源码,这个比较复杂,我也是看了很多大佬的讲解才读通(小菜鸡啦~),在文末会放上这些链接。后来又找到了大佬复现的简易版本,这个版本的代码比较受欢迎且易使用,对新手小白比较友好,那我们就来讲解一下第二个版本吧!
前期回顾
【Transformer系列(1)】encoder(编码器)和decoder(解码器)
【Transformer系列(2)】注意力机制、自注意力机制、多头注意力机制、通道注意力机制、空间注意力机制超详细讲解
【Transformer系列(3)】 《Attention Is All You Need》论文超详细解读(翻译+精读)
【Transformer系列(4)】Transformer模型结构超详细解读
【Transformer系列(5)】Transformer代码超详细解读(Pytorch)
目录
前言
✨一、ViT网络结构讲解
✨二、简易版本
⚡️2.1 导入依赖库
⚡️2.2 pair函数
⚡️2.3 PreNorm层
⚡️2.4 FFN层
⚡️2.5 Attention层
⚡️2.6 构建Transformer
⚡️2.7 构建ViT
使用案例
完整代码
✨三、官方提供代码版本
下图是ViT模型
(1)第1部分:将图形转化为序列化数据
综上,原本H×W×C 维的图片被转化为了N个D维的向量(或者一个N×D维的二维矩阵)。
(2)第2部分:Position embedding
由于Transformer模型本身是没有位置信息的,和NLP中一样,我们需要用position embedding将位置信息加到模型中去。
如上图所示,编号有0-9的紫色框表示各个位置的position embedding,而紫色框旁边的粉色框则是经过linear projection之后的flattened patch向量。
文中采用将position embedding(即图中紫色框)和patch embedding(即图中粉色框)相加的方式结合position信息。
(3)第3部分:Learnable embedding
将 patch 输入一个 Linear Projection of Flattened Patches 这个 Embedding 层,就会得到一个个向量,通常就称作 tokens。tokens包含position信息以及图像信息。
紧接着在一系列 token 的前面加上加上一个新的 token,叫做class token,也就是上图带星号的粉色框(即0号紫色框右边的那个),注意这个不是通过某个patch产生的。其作用类似于BERT中的[class] token。在BERT中,[class] token经过encoder后对应的结果作为整个句子的表示;class token也是其他所有token做全局平均池化,效果一样。
(4)第4部分:Transformer encoder
最后输入到 Transformer Encoder 中,对应着右边的图,将 block 重复堆叠 L 次,整个模型也就包括 L 个 Transformer。Transformer Encoder结构和NLP中Transformer结构基本上相同,class embedding 对应的输出经过 MLP Head 进行类别判断。
关于encoder和decoder的详解,可以看这篇:【Transformer系列(1)】encoder(编码器)和decoder(解码器)
大佬复现版本代码:https://github.com/lucidrains/vit-pytorch
ViT网络结构如下:
#======================1.导入依赖库=============================#
import torch
from torch import nn, einsum
import torch.nn.functional as F
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
如何导入eionps?
conda install einops
这时可能会报错
我们需要先输入
conda config--append channels conda-forge
然后再输入上面的命令就好了
#======================2.pair函数=============================#
# 辅助函数,生成元组
def pair(t):
return t if isinstance(t, tuple) else (t, t)
这段代码的作用是:判断t是否是元组,如果是,直接返回t;如果不是,则将t复制为元组(t, t)再返回。
用来处理当给出的图像尺寸或块尺寸是int类型(如224)时,直接返回为同值元组(如(224, 224))。
#======================3.PreNorm=============================#
# 规范化层的类封装
class PreNorm(nn.Module):
'''
:param dim 输入和输出维度
fn 前馈网络层,选择Multi-Head Attn和MLP二者之一
'''
def __init__(self, dim, fn):
super().__init__()
# LayerNorm: ( a - mean(last 2 dim) ) / sqrt( var(last 2 dim) )
# 数据归一化的输入维度设定,以及保存前馈层
self.norm = nn.LayerNorm(dim)
self.fn = fn
# 前向传播就是将数据归一化后传递给前馈层
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
PreNorm对应框图中最下面的黄色的Norm层。
结构往往更容易训练,可以在反向时防止梯度爆炸或者梯度消失。
包含两个参数:
#======================4.FeedForward=============================#
# FFN
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout=0.):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
FeedForward层由线性层,配合激活函数GELU和Dropout实现,对应框图中蓝色的MLP。
Multi-Head Attention的输出做了残差连接和Norm之后得数据,然后FeedForward做了两次线性变换,目的是更加深入的提取特征。
包含三个参数:
FeedForward层共有2个全连接层,整个结构是:
注意:GELU(x) = x * Φ(x), 其中,Φ(x)是高斯分布的累积分布函数 。
#======================5.Attention=============================#
# Attention
class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
inner_dim = heads * dim_head
project_out = not (heads == 1 and dim_head == dim)
self.heads = heads
# 表示1/(sqrt(dim_head))用于消除误差,保证方差为1,避免向量内积过大导致的softmax将许多输出置0的情况
# 可以看原文《attention is all you need》中关于Scale Dot-Product Attention如何抑制内积过大
self.scale = dim_head ** -0.5
# dim = > 0 时,表示mask第d维度,对相同的第d维度,进行softmax
# dim = < 0 时,表示mask倒数第d维度,对相同的倒数第d维度,进行softmax
self.attend = nn.Softmax(dim = -1)
# 生成qkv矩阵,三个矩阵被放在一起,后续会被分开
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
# 如果是多头注意力机制则需要进行全连接和防止过拟合,否则输出不做更改
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
) if project_out else nn.Identity()
def forward(self, x):
# 分割成q、k、v三个矩阵
# qkv为 inner_dim * 3,其中inner_dim = heads * dim_head
qkv = self.to_qkv(x).chunk(3, dim = -1)
# qkv的维度是(3, inner_dim = heads * dim_head)
# 'b n (h d) -> b h n d' 重新按思路分离出8个头,一共8组q,k,v矩阵
# rearrange后维度变成 (3, heads, dim, dim_head)
# 经过map后,q、k、v维度变成(1, heads, dim, dim_head)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
# query * key 得到对value的注意力预测,并通过向量内积缩放防止softmax无效化部分参数
# heads * dim * dim
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
# 对最后一个维度进行softmax后得到预测的概率值
attn = self.attend(dots)
# 乘积得到预测结果
# out -> heads * dim * dim_head
out = torch.matmul(attn, v)
# 重组张量,将heads维度重新还原
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
Attention是Transformer中的核心部件,对应框图中的绿色的Multi-Head Attention。
包含四个参数:
Attention操作的整体流程:
#======================7.构建Transformer=============================#
# Transformer
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
super().__init__()
# 设定depth个encoder相连,并添加残差结构
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)),
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
]))
def forward(self, x):
# 每次取出包含Norm-attention和Norm-mlp这两个的ModuleList,实现残差结构
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return x
把上面的层定义好之后,我们就可以构建整个Transformer Block了。
#======================8.构建ViT=============================#
# ViT
class ViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.):
super().__init__()
# image_size就是每一张图像的长和宽,通过pair函数便捷明了的表现
# patch_size就是图像的每一个patch的长和宽
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(patch_size)
# 保证图像可以整除为若干个patch
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
# 计算出每一张图片会被切割为多少个patch
# 假设输入维度(64, 3, 224, 224), num_patches = 49
num_patches = (image_height // patch_height) * (image_width // patch_width)
# 每一个patch数组大小, patch_dim = 3*32*32=3072
patch_dim = channels * patch_height * patch_width
# cls就是分类的Token, mean就是均值池化
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'
# embeding操作:假设输入维度(64, 3, 224, 224),那么经过Rearange层后变成了(64, 7*7=49, 32*32*3=3072)
self.to_patch_embedding = nn.Sequential(
# 将图片分割为b*h*w个三通道patch,b表示输入图像数量
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width),
# 经过线性全连接后,维度变成(64, 49, 128)
nn.Linear(patch_dim, dim),
)
# dim张图像,每张图像需要num_patches个向量进行编码
# 位置编码(1, 50, 128) 本应该为49,但因为cls表示类别需要增加一个
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
# CLS类别token,(1, 1, 128)
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
# 设置dropout
self.dropout = nn.Dropout(emb_dropout)
# 初始化Transformer
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout)
# pool默认是cls进行分类
self.pool = pool
self.to_latent = nn.Identity()
# 多层感知用于将最终特征映射为2个类别
self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)
def forward(self, img):
# 第一步,原始图像ebedding,进行了图像切割以及线性变换,变成x->(64, 49, 128)
x = self.to_patch_embedding(img)
# 得到原始图像数目和单图像的patches数量, b=64, n=49
b, n, _ = x.shape
# (1, 1, 128) -> (64, 1, 128) 为每一张图像设置一个cls的token
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
# 将cls token加入到数据中 -> (64, 50, 128)
x = torch.cat((cls_tokens, x), dim=1)
# x(64, 50, 128)添加位置编码(1, 50, 128)
x += self.pos_embedding[:, :(n + 1)]
# 经过dropout层防止过拟合
x = self.dropout(x)
x = self.transformer(x)
# 进行均值池化
x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0]
x = self.to_latent(x)
# 最终进行分类映射
return self.mlp_head(x)
ViT就是图中的右边部分。
包含参数:
ViT操作的整体流程:
以上就是ViT模型的定义啦~
在训练脚本中实例化一个ViT模型来进行训练即可,以下脚本是大佬给的案例,可验证ViT模型正常运作。
import torch
from vit_pytorch import ViT
v = ViT(
image_size = 256, # 图像大小
patch_size = 32, # patch大小(分块的大小)
num_classes = 1000, # imagenet数据集1000分类
dim = 1024, # position embedding的维度
depth = 6, # encoder和decoder中block层数是6
heads = 16, # multi-head中head的数量为16
mlp_dim = 2048,
dropout = 0.1, #
emb_dropout = 0.1
)
img = torch.randn(1, 3, 256, 256)
preds = v(img) # (1, 1000)
## from https://github.com/lucidrains/vit-pytorch
import torch
from torch import nn
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
def pair(t):
return t if isinstance(t, tuple) else (t, t)
class PreNorm(nn.Module):
# 在执行fn之前执行一个Layer Norm
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
# 前馈神经网络 = 2个全连接层
self.net = nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
inner_dim = dim_head * heads
project_out = not (heads == 1 and dim_head == dim)
self.heads = heads
self.scale = dim_head ** -0.5 # 缩放因子
self.attend = nn.Softmax(dim = -1)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
) if project_out else nn.Identity()
def forward(self, x):
# x: [bs, 197, 1024] 197 = 1个Cls + 196个patch 1024就是每一个patch需要转为1024长度的向量
# self.to_qkv(x)将x向量映射到长度为1024*3
# chunk: qkv 最后是一个元祖,tuple,长度是3,每个元素形状:[1, 197, 1024]
# 直接用x配合一个Linear生成qkv,再切分为3块
qkv = self.to_qkv(x).chunk(3, dim = -1)
# 再把qkv分别拆分开来
# q: [1, 16, 197, 64] k: [1, 16, 197, 64] v: [1, 16, 197, 64]
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
# q * k转置 除以根号d_k
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
# softmax得到每个token对于其他token的attention系数
attn = self.attend(dots)
# * v [1, 16, 197, 64]
out = torch.matmul(attn, v)
# [1, 197, 1024]
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
super().__init__()
self.layers = nn.ModuleList([])
for _ in range(depth): # 堆叠多个Encoder depth个
self.layers.append(nn.ModuleList([
# 每个encoder = Attention(Multi-Head Attention) + FeedForward(MLP)
# PreNorm:指在fn(Attention/FeedForward)之前执行一个Layer Norm
PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)),
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
]))
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return x
class ViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.):
super().__init__()
image_height, image_width = pair(image_size) # 224*224
patch_height, patch_width = pair(patch_size) # 16 * 16
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
num_patches = (image_height // patch_height) * (image_width // patch_width) # 得到多少个token 14x14=196
patch_dim = channels * patch_height * patch_width # 3x16x16 = 768 patch展平后的维度
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width), # 把所有的patch拉平->768维
nn.Linear(patch_dim, dim), # 映射到encoder需要的维度768->1024
)
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim)) # 生成所有token和Cls的位置编码
self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) # 生成Cls的初始化参数
self.dropout = nn.Dropout(emb_dropout) # embedding后面一般会接的一个Dropout
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout) # encoder
self.pool = pool
self.to_latent = nn.Identity()
self.mlp_head = nn.Sequential( # CLS多分类输出部分
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)
def forward(self, img):
# img: [1, 3, 224, 224] x = [1, 196, 1024]
# 生成每张图片的Patch Embedding
# 图片的每一个通道切分为Token + 将3个channel的所有Token拉直,拉到一个1维,长度为768的向量 + 接一个线性层映射到encoder需要的维度768->1024
x = self.to_patch_embedding(img)
b, n, _ = x.shape # b = 1 n = 196
# 为每张图片生成一个Cls符号 [1, 1, 1024]
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
# [1, 197, 1024] 将每张图片的Cls符号和Patch Embedding进行拼接
x = torch.cat((cls_tokens, x), dim=1)
# 初始化位置编码 再和(Cls和Patch Embedding)对应位置相加
x += self.pos_embedding[:, :(n + 1)]
# embedding后接一个Dropout
x = self.dropout(x)
# 将最终的Embedding输入Encoder x: [1, 197, 1024] -> [1, 197, 1024]
x = self.transformer(x)
# self.pool = 'cls' 所以取第一个输出直接进行多分类 [1, 1024]
x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0]
x = self.to_latent(x) # 恒等映射 [1, 1024]
# Cls Head 多分类 [1, cls_num]
return self.mlp_head(x)
if __name__ == '__main__':
v = ViT(
image_size=224, # 输入图像的大小
patch_size=16, # 每个token/patch的大小16x16
num_classes=1000, # 多分类
dim=1024, # encoder规定的输入的维度
depth=6, # Encoder的个数
heads=16, # 多头注意力机制的head个数
mlp_dim=2048, # mlp的维度
dropout=0.1, #
emb_dropout=0.1 # embedding一半会接一个dropout
)
img = torch.randn(1, 3, 224, 224)
preds = v(img) # (1, 1000)
以上参考:
Vision Transformer(ViT)PyTorch代码全解析(附图解) Vision Transformer——ViT代码解读
官方代码:GitHub - google-research/vision_transformer
完整代码
"""
original code from rwightman:
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
"""
from functools import partial
from collections import OrderedDict
import torch
import torch.nn as nn
def drop_path(x, drop_prob: float = 0., training: bool = False):
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
'survival rate' as the argument.
"""
if drop_prob == 0. or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
output = x.div(keep_prob) * random_tensor
return output
class DropPath(nn.Module):
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
class PatchEmbed(nn.Module):
"""
2D Image to Patch Embedding
"""
def __init__(self, img_size=224, patch_size=16, in_c=3, embed_dim=768, norm_layer=None):
super().__init__()
img_size = (img_size, img_size)
patch_size = (patch_size, patch_size)
self.img_size = img_size
self.patch_size = patch_size
self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
self.num_patches = self.grid_size[0] * self.grid_size[1]
self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size)
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
def forward(self, x):
B, C, H, W = x.shape
assert H == self.img_size[0] and W == self.img_size[1], \
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
# flatten: [B, C, H, W] -> [B, C, HW]
# transpose: [B, C, HW] -> [B, HW, C]
x = self.proj(x).flatten(2).transpose(1, 2)
x = self.norm(x)
return x
class Attention(nn.Module):
def __init__(self,
dim, # 输入token的dim
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop_ratio=0.,
proj_drop_ratio=0.):
super(Attention, self).__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop_ratio)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop_ratio)
def forward(self, x):
# [batch_size, num_patches + 1, total_embed_dim]
B, N, C = x.shape
# qkv(): -> [batch_size, num_patches + 1, 3 * total_embed_dim]
# reshape: -> [batch_size, num_patches + 1, 3, num_heads, embed_dim_per_head]
# permute: -> [3, batch_size, num_heads, num_patches + 1, embed_dim_per_head]
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
# [batch_size, num_heads, num_patches + 1, embed_dim_per_head]
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
# transpose: -> [batch_size, num_heads, embed_dim_per_head, num_patches + 1]
# @: multiply -> [batch_size, num_heads, num_patches + 1, num_patches + 1]
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
# @: multiply -> [batch_size, num_heads, num_patches + 1, embed_dim_per_head]
# transpose: -> [batch_size, num_patches + 1, num_heads, embed_dim_per_head]
# reshape: -> [batch_size, num_patches + 1, total_embed_dim]
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Mlp(nn.Module):
"""
MLP as used in Vision Transformer, MLP-Mixer and related networks
"""
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Block(nn.Module):
def __init__(self,
dim,
num_heads,
mlp_ratio=4.,
qkv_bias=False,
qk_scale=None,
drop_ratio=0.,
attn_drop_ratio=0.,
drop_path_ratio=0.,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm):
super(Block, self).__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
attn_drop_ratio=attn_drop_ratio, proj_drop_ratio=drop_ratio)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path_ratio) if drop_path_ratio > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop_ratio)
def forward(self, x):
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class VisionTransformer(nn.Module):
def __init__(self, img_size=224, patch_size=16, in_c=3, num_classes=1000,
embed_dim=768, depth=12, num_heads=12, mlp_ratio=4.0, qkv_bias=True,
qk_scale=None, representation_size=None, distilled=False, drop_ratio=0.,
attn_drop_ratio=0., drop_path_ratio=0., embed_layer=PatchEmbed, norm_layer=None,
act_layer=None):
"""
Args:
img_size (int, tuple): input image size
patch_size (int, tuple): patch size
in_c (int): number of input channels
num_classes (int): number of classes for classification head
embed_dim (int): embedding dimension
depth (int): depth of transformer
num_heads (int): number of attention heads
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
qkv_bias (bool): enable bias for qkv if True
qk_scale (float): override default qk scale of head_dim ** -0.5 if set
representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set
distilled (bool): model includes a distillation token and head as in DeiT models
drop_ratio (float): dropout rate
attn_drop_ratio (float): attention dropout rate
drop_path_ratio (float): stochastic depth rate
embed_layer (nn.Module): patch embedding layer
norm_layer: (nn.Module): normalization layer
"""
super(VisionTransformer, self).__init__()
self.num_classes = num_classes
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
self.num_tokens = 2 if distilled else 1
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
act_layer = act_layer or nn.GELU
self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_c=in_c, embed_dim=embed_dim)
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.dist_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if distilled else None
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))
self.pos_drop = nn.Dropout(p=drop_ratio)
dpr = [x.item() for x in torch.linspace(0, drop_path_ratio, depth)] # stochastic depth decay rule
self.blocks = nn.Sequential(*[
Block(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop_ratio=drop_ratio, attn_drop_ratio=attn_drop_ratio, drop_path_ratio=dpr[i],
norm_layer=norm_layer, act_layer=act_layer)
for i in range(depth)
])
self.norm = norm_layer(embed_dim)
# Representation layer
if representation_size and not distilled:
self.has_logits = True
self.num_features = representation_size
self.pre_logits = nn.Sequential(OrderedDict([
("fc", nn.Linear(embed_dim, representation_size)),
("act", nn.Tanh())
]))
else:
self.has_logits = False
self.pre_logits = nn.Identity()
# Classifier head(s)
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
self.head_dist = None
if distilled:
self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity()
# Weight init
nn.init.trunc_normal_(self.pos_embed, std=0.02)
if self.dist_token is not None:
nn.init.trunc_normal_(self.dist_token, std=0.02)
nn.init.trunc_normal_(self.cls_token, std=0.02)
self.apply(_init_vit_weights)
def forward_features(self, x):
# [B, C, H, W] -> [B, num_patches, embed_dim]
x = self.patch_embed(x) # [B, 196, 768]
# [1, 1, 768] -> [B, 1, 768]
cls_token = self.cls_token.expand(x.shape[0], -1, -1)
if self.dist_token is None:
x = torch.cat((cls_token, x), dim=1) # [B, 197, 768]
else:
x = torch.cat((cls_token, self.dist_token.expand(x.shape[0], -1, -1), x), dim=1)
x = self.pos_drop(x + self.pos_embed)
x = self.blocks(x)
x = self.norm(x)
if self.dist_token is None:
return self.pre_logits(x[:, 0])
else:
return x[:, 0], x[:, 1]
def forward(self, x):
x = self.forward_features(x)
if self.head_dist is not None:
x, x_dist = self.head(x[0]), self.head_dist(x[1])
if self.training and not torch.jit.is_scripting():
# during inference, return the average of both classifier predictions
return x, x_dist
else:
return (x + x_dist) / 2
else:
x = self.head(x)
return x
def _init_vit_weights(m):
"""
ViT weight initialization
:param m: module
"""
if isinstance(m, nn.Linear):
nn.init.trunc_normal_(m.weight, std=.01)
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode="fan_out")
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.LayerNorm):
nn.init.zeros_(m.bias)
nn.init.ones_(m.weight)
def vit_base_patch16_224(num_classes: int = 1000):
"""
ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
ImageNet-1k weights @ 224x224, source https://github.com/google-research/vision_transformer.
weights ported from official Google JAX impl:
链接: https://pan.baidu.com/s/1zqb08naP0RPqqfSXfkB2EA 密码: eu9f
"""
model = VisionTransformer(img_size=224,
patch_size=16,
embed_dim=768,
depth=12,
num_heads=12,
representation_size=None,
num_classes=num_classes)
return model
def vit_base_patch16_224_in21k(num_classes: int = 21843, has_logits: bool = True):
"""
ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
weights ported from official Google JAX impl:
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch16_224_in21k-e5005f0a.pth
"""
model = VisionTransformer(img_size=224,
patch_size=16,
embed_dim=768,
depth=12,
num_heads=12,
representation_size=768 if has_logits else None,
num_classes=num_classes)
return model
def vit_base_patch32_224(num_classes: int = 1000):
"""
ViT-Base model (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929).
ImageNet-1k weights @ 224x224, source https://github.com/google-research/vision_transformer.
weights ported from official Google JAX impl:
链接: https://pan.baidu.com/s/1hCv0U8pQomwAtHBYc4hmZg 密码: s5hl
"""
model = VisionTransformer(img_size=224,
patch_size=32,
embed_dim=768,
depth=12,
num_heads=12,
representation_size=None,
num_classes=num_classes)
return model
def vit_base_patch32_224_in21k(num_classes: int = 21843, has_logits: bool = True):
"""
ViT-Base model (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929).
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
weights ported from official Google JAX impl:
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch32_224_in21k-8db57226.pth
"""
model = VisionTransformer(img_size=224,
patch_size=32,
embed_dim=768,
depth=12,
num_heads=12,
representation_size=768 if has_logits else None,
num_classes=num_classes)
return model
def vit_large_patch16_224(num_classes: int = 1000):
"""
ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929).
ImageNet-1k weights @ 224x224, source https://github.com/google-research/vision_transformer.
weights ported from official Google JAX impl:
链接: https://pan.baidu.com/s/1cxBgZJJ6qUWPSBNcE4TdRQ 密码: qqt8
"""
model = VisionTransformer(img_size=224,
patch_size=16,
embed_dim=1024,
depth=24,
num_heads=16,
representation_size=None,
num_classes=num_classes)
return model
def vit_large_patch16_224_in21k(num_classes: int = 21843, has_logits: bool = True):
"""
ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929).
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
weights ported from official Google JAX impl:
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch16_224_in21k-606da67d.pth
"""
model = VisionTransformer(img_size=224,
patch_size=16,
embed_dim=1024,
depth=24,
num_heads=16,
representation_size=1024 if has_logits else None,
num_classes=num_classes)
return model
def vit_large_patch32_224_in21k(num_classes: int = 21843, has_logits: bool = True):
"""
ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929).
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
weights ported from official Google JAX impl:
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch32_224_in21k-9046d2e7.pth
"""
model = VisionTransformer(img_size=224,
patch_size=32,
embed_dim=1024,
depth=24,
num_heads=16,
representation_size=1024 if has_logits else None,
num_classes=num_classes)
return model
def vit_huge_patch14_224_in21k(num_classes: int = 21843, has_logits: bool = True):
"""
ViT-Huge model (ViT-H/14) from original paper (https://arxiv.org/abs/2010.11929).
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
NOTE: converted weights not currently available, too large for github release hosting.
"""
model = VisionTransformer(img_size=224,
patch_size=14,
embed_dim=1280,
depth=32,
num_heads=16,
representation_size=1280 if has_logits else None,
num_classes=num_classes)
return model
比较不错的大佬解读:
CSDN:Vision Transformer(VIT)代码分析——保姆级教程
【深度学习】详解 Vision Transformer (ViT)
【计算机视觉】ViT:代码逐行解读
知乎:ViT源码阅读-PyTorch - 知乎 (zhihu.com)
全网最强ViT (Vision Transformer)原理及代码解析 - 知乎 (zhihu.com)
B站:【VIT (Vision Transformer) 模型论文+代码(源码)从零详细解读,看不懂来打我】