大数据之flume开发实例

一、复制和多路复用(将数据按照不同类型存放到不同路径)

案例需求:使用 Flume-1 监控文件变动,Flume-1 将变动内容传递给 Flume-2,Flume-2 负责存储 到 HDFS。同时 Flume-1 将变动内容传递给 Flume-3,Flume-3 负责输出到 Local FileSystem。

        流程图如下:大数据之flume开发实例_第1张图片

具体实现:1)、首先准备配置文件的存放和flume3 的本地目录创建

在/opt/module/flume/job下创建group1文件夹:mkdir group1

在/opt/moudle/data下创建flume3文件夹,mkdir flume3

 2)、在group1文件下创建flume-file-flume.conf

配置 1 个接收日志文件的 source 和两个 channel、两个 sink,分别输送给 flume-flumehdfs 和 flume-flume-dir。

# Name the components on this agent
a1.sources = r1
a1.sinks = k1 k2
a1.channels = c1 c2
# 将数据流复制给所有 channel
a1.sources.r1.selector.type = replicating
# Describe/configure the source
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F /opt/module/hive/logs/hive.log
a1.sources.r1.shell = /bin/bash -c
# Describe the sink
# sink 端的 avro 是一个数据发送者
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = hadoop102
a1.sinks.k1.port = 4141
a1.sinks.k2.type = avro
a1.sinks.k2.hostname = hadoop102
a1.sinks.k2.port = 4142
# Describe the channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
a1.channels.c2.type = memory
a1.channels.c2.capacity = 1000
a1.channels.c2.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1 c2
a1.sinks.k1.channel = c1
a1.sinks.k2.channel = c2

3)、在group1文件下创建flume-flume-hdfs.conf,将获取的数据上传到hdfs集群上,配置上级 Flume 输出的 Source,输出是到 HDFS 的 Sink。

# Name the components on this agent
a2.sources = r1
a2.sinks = k1
a2.channels = c1
# Describe/configure the source
# source 端的 avro 是一个数据接收服务
a2.sources.r1.type = avro
a2.sources.r1.bind = hadoop102
a2.sources.r1.port = 4141
# Describe the sink
a2.sinks.k1.type = hdfs
a2.sinks.k1.hdfs.path = hdfs://hadoop102:8020/flume2/%Y%m%d/%H
#上传文件的前缀
a2.sinks.k1.hdfs.filePrefix = flume2-
#是否按照时间滚动文件夹
a2.sinks.k1.hdfs.round = true
#多少时间单位创建一个新的文件夹
a2.sinks.k1.hdfs.roundValue = 1
#重新定义时间单位
a2.sinks.k1.hdfs.roundUnit = hour
#是否使用本地时间戳
a2.sinks.k1.hdfs.useLocalTimeStamp = true
#积攒多少个 Event 才 flush 到 HDFS 一次
a2.sinks.k1.hdfs.batchSize = 100
#设置文件类型,可支持压缩
a2.sinks.k1.hdfs.fileType = DataStream
#多久生成一个新的文件
a2.sinks.k1.hdfs.rollInterval = 30
#设置每个文件的滚动大小大概是 128M
a2.sinks.k1.hdfs.rollSize = 134217700
#文件的滚动与 Event 数量无关
a2.sinks.k1.hdfs.rollCount = 0
# Describe the channel
a2.channels.c1.type = memory
a2.channels.c1.capacity = 1000
a2.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a2.sources.r1.channels = c1
a2.sinks.k1.channel = c1

4)、在group文件下创建 flume-flume-dir.conf;配置上级 Flume 输出的 Source,输出是到本地目录的 Sink。

# Name the components on this agent
a3.sources = r1
a3.sinks = k1
a3.channels = c2
# Describe/configure the source
a3.sources.r1.type = avro
a3.sources.r1.bind = hadoop102
a3.sources.r1.port = 4142
# Describe the sink
a3.sinks.k1.type = file_roll
a3.sinks.k1.sink.directory = /opt/module/data/flume3
# Describe the channel
a3.channels.c2.type = memory
a3.channels.c2.capacity = 1000
a3.channels.c2.transactionCapacity = 100
# Bind the source and sink to the channel
a3.sources.r1.channels = c2
a3.sinks.k1.channel = c2

5)、执行配置文件(先启动服务端,在启动客户端);分别启动对应的 flume 进程:flume-flume-dir,flume-flume-hdfs,flume-file-flume。

$ bin/flume-ng agent --conf conf/ --name a3 --conf-file job/group1/flume-flume-dir.conf

$ bin/flume-ng agent --conf conf/ --name a2 --conf-file job/group1/flume-flume-hdfs.conf

$ bin/flume-ng agent --conf conf/ --name a1 --conf-file job/group1/flume-file-flume.conf

6)、最后启动hive执行相关操作,并在hdfs和flume3文件下查看相关日志变化。

二、负载均衡和故障转移

案例需求(故障转移):使用 Flume1 监控一个端口,其 sink 组中的 sink 分别对接 Flume2 和 Flume3,采用 FailoverSinkProcessor,实现故障转移的功能。

分析流程图如下:

大数据之flume开发实例_第2张图片

 具体实现:1)、首先准备配置文件的存放

在/opt/module/flume/job下创建group2文件夹:mkdir group2

 2)、在group2文件下创建flume-netcat-flume.conf

配置 1 个 netcat source 和 1 个 channel、1 个 sink group(2 个 sink),分别输送给 flume-flume-console1 和 flume-flume-console2。、

# Name the components on this agent
a1.sources = r1
a1.channels = c1
a1.sinkgroups = g1
a1.sinks = k1 k2
# Describe/configure the source
a1.sources.r1.type = netcat
a1.sources.r1.bind = localhost
a1.sources.r1.port = 44444
a1.sinkgroups.g1.processor.type = failover
a1.sinkgroups.g1.processor.priority.k1 = 5
a1.sinkgroups.g1.processor.priority.k2 = 10
a1.sinkgroups.g1.processor.maxpenalty = 10000
# Describe the sink
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = hadoop102
a1.sinks.k1.port = 4141
a1.sinks.k2.type = avro
a1.sinks.k2.hostname = hadoop102
a1.sinks.k2.port = 4142
# Describe the channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinkgroups.g1.sinks = k1 k2
a1.sinks.k1.channel = c1
a1.sinks.k2.channel = c1

 3)、在group2文件下创建flume-flume-console1.conf

配置上级 Flume 输出的 Source,输出是到本地控制台。

# Name the components on this agent
a2.sources = r1
a2.sinks = k1
a2.channels = c1
# Describe/configure the source
a2.sources.r1.type = avro
a2.sources.r1.bind = hadoop102
a2.sources.r1.port = 4141
# Describe the sink
a2.sinks.k1.type = logger
# Describe the channel
a2.channels.c1.type = memory
a2.channels.c1.capacity = 1000
a2.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a2.sources.r1.channels = c1
a2.sinks.k1.channel = c1

 4)、在group2文件下创建flume-flume-console2.conf

配置上级 Flume 输出的 Source,输出是到本地控制台。

# Name the components on this agent
a3.sources = r1
a3.sinks = k1
a3.channels = c2
# Describe/configure the source
a3.sources.r1.type = avro
a3.sources.r1.bind = hadoop102
a3.sources.r1.port = 4142
# Describe the sink
a3.sinks.k1.type = logger
# Describe the channel
a3.channels.c2.type = memory
a3.channels.c2.capacity = 1000
a3.channels.c2.transactionCapacity = 100
# Bind the source and sink to the channel
a3.sources.r1.channels = c2
a3.sinks.k1.channel = c2

5)、执行配置文件(先启动服务端,在启动客户端)

分别开启对应配置文件:flume-flume-console2,flume-flume-console1,flume-netcat-flume

bin/flume-ng agent --conf conf/ --name a3 --conf-file job/group2/flume-flume-console2.conf - Dflume.root.logger=INFO,console

bin/flume-ng agent --conf conf/ --name a2 --conf-file job/group2/flume-flume-console1.conf - Dflume.root.logger=INFO,console

bin/flume-ng agent --conf conf/ --name a1 --conf-file job/group2/flume-netcat-flume.conf

6)使用 netcat 工具向本机的 44444 端口发送内容,可以在优先级较高的flume中接收信息

nc localhost 44444

大数据之flume开发实例_第3张图片

 断开优先级较高的一端后,可以在另一个flume中查看信息

案例需求(故障转移):在故障转移的基础上修改flume-netcat-flume.conf配置文件即可

 大数据之flume开发实例_第4张图片

修改为:

a1.sinkgroups.g1.processor.type = load_balance

 结果显示在nc localhost 44444输出的信息,在flume2和flume3中分别都有显示

三、聚合

案例需求:hadoop102 上的 Flume-1 监控文件/opt/module/group.log,

hadoop103 上的 Flume-2 监控某一个端口的数据流,

Flume-1 与 Flume-2 将数据发送给 hadoop104 上的 Flume-3,Flume-3 将最终数据打印到控制台

分析流程图如下:

大数据之flume开发实例_第5张图片

具体实现:1)、先在hadoop102的/opt/module目录下创建group.log,分发flume,并在 hadoop102、hadoop103 以及 hadoop104 的/opt/module/flume/job 目录下创建一个 group3 文件夹。

xsync flume

touch group.log

2)、在hadoop102上创建 flume1-logger-flume.conf

配置 Source 用于监控 hive.log 文件,配置 Sink 输出数据到下一级 Flume。

# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F /opt/module/group.log
a1.sources.r1.shell = /bin/bash -c
# Describe the sink
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = hadoop104
a1.sinks.k1.port = 4141
# Describe the channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

3)、在hadoop103上创建 flume2-netcat-flume.conf

配置 Source 监控端口 44444 数据流,配置 Sink 数据到下一级 Flume:

# Name the components on this agent
a2.sources = r1
a2.sinks = k1
a2.channels = c1
# Describe/configure the source
a2.sources.r1.type = netcat
a2.sources.r1.bind = hadoop103
a2.sources.r1.port = 44444
# Describe the sink
a2.sinks.k1.type = avro
a2.sinks.k1.hostname = hadoop104
a2.sinks.k1.port = 4141
# Use a channel which buffers events in memory
a2.channels.c1.type = memory
a2.channels.c1.capacity = 1000
a2.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a2.sources.r1.channels = c1
a2.sinks.k1.channel = c1

4)、在hadoop104上创建 flume3-flume-logger.conf

配置 source 用于接收 flume1 与 flume2 发送过来的数据流,最终合并后 sink 到控制 台。

# Name the components on this agent
a3.sources = r1
a3.sinks = k1
a3.channels = c1
# Describe/configure the source
a3.sources.r1.type = avro
a3.sources.r1.bind = hadoop104
a3.sources.r1.port = 4141
# Describe the sink
# Describe the sink
a3.sinks.k1.type = logger
# Describe the channel
a3.channels.c1.type = memory
a3.channels.c1.capacity = 1000
a3.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a3.sources.r1.channels = c1
a3.sinks.k1.channel = c1

5)、执行配置文件,分别开启对应配置文件:flume3-flume-logger.conf,flume2-netcat-flume.conf, flume1-logger-flume.conf。

bin/flume-ng agent --conf conf/ --name a3 --conf-file job/group3/flume3-flume-logger.conf - Dflume.root.logger=INFO,console

bin/flume-ng agent --conf conf/ --name a2 --conf-file job/group3/flume1-logger-flume.conf

bin/flume-ng agent --conf conf/ --name a1 --conf-file job/group3/flume2-netcat-flume.conf

在 hadoop102上向/opt/module 目录下的 group.log 追加内容

echo hello >> group.log

在 hadoop103上向 44444 端口发送数据

nc hadoop103 44444

 即可在hadoop104的控制台查看相关信息。

你可能感兴趣的:(大数据,flume)