Flink双流join的3种方式及IntervalJoin源码分析

大数据技术AI

Flink/Spark/Hadoop/数仓,数据分析、面试,源码解读等干货学习资料

117篇原创内容

公众号

概述

在数据库中的静态表上做 OLAP 分析时,两表 join 是非常常见的操作。同理,在流式处理作业中,有时也需要在两条流上做 join 以获得更丰富的信息。Flink DataStream API 为用户提供了3个算子来实现双流 join,分别是:

  • join()

  • coGroup()

  • intervalJoin()

join()

join() 算子提供的语义为"Window join",即按照指定字段和(滚动/滑动/会话)窗口进行 inner join,支持处理时间事件时间两种时间特征。

 paymentInfo_ds.join(orderInfo__ds)
   .where(_.order_id)
   .equalTo(_.order_id)
   .window(TumblingEventTimeWindows.of(Time.seconds(20)))
   .apply(new JoinFunction[PaymentInfo,OrderInfo,PaymentWide]{
     override def join(first: PaymentInfo, second: OrderInfo): PaymentWide = {
       //处理逻辑
      new PaymentWide(first, second)
     }
   })

coGroup()

只有 inner join 肯定还不够,如何实现 left/right outer join 呢?答案就是利用 coGroup() 算子。

它的调用方式类似于 join() 算子,也需要开窗,但是 CoGroupFunction 比 JoinFunction 更加灵活,可以按照用户指定的逻辑匹配左流和/或右流的数据并输出。

 paymentInfo_wm_ds.coGroup(orderInfo_ds)
   .where(_.order_id)
   .equalTo(_.order_id)
   .window(TumblingEventTimeWindows.of(Time.seconds(20)))
   .apply(new CoGroupFunction[PaymentInfo,OrderInfo,PaymentWide](){
     override def coGroup(first: lang.Iterable[PaymentInfo], second: lang.Iterable[OrderInfo], out: Collector[PaymentWide]): Unit = {
       val f = first.iterator()
       while (f.hasNext){
         //处理左流数据
         
         //处理右流数据
       }
     }
   })

intervalJoin()

join() 和 coGroup() 都是基于窗口做关联的。但是在某些情况下,两条流的数据步调未必一致。例如,订单流的数据有可能在点击流的购买动作发生之后很久才被写入,如果用窗口来圈定,很容易 join 不上。

所以 Flink 又提供了"Interval join"的语义,按照指定字段以及右流相对左流偏移的时间区间进行关联,即:right.timestamp ∈ [left.timestamp + lowerBound; left.timestamp + upperBound]

interval join 也是 inner join,虽然不需要开窗,但是需要用户指定偏移区间的上下界,并且只支持事件时间。注意在运行之前,需要分别在两个流上应用 assignTimestampsAndWatermarks() 方法获取事件时间戳和水印。

paymentInfo_ds.keyBy(_.order_id)
   .intervalJoin(orderWide_wm_ds.keyBy(_.order_id))
   .between(Time.minutes(-15), Time.minutes(0))
   .process(new ProcessJoinFunction[PaymentInfo, OrderInfo, PaymentWide]() {
     override def processElement(in1: PaymentInfo,
                                 in2: OrderInfo,
                                 context: ProcessJoinFunction[PaymentInfo, OrderInfo, PaymentWide]#Context,
                                 collector: Collector[PaymentWide]): Unit = {
       collector.collect(new PaymentWide(in1, in2))
     }
   })

由上可见,interval join 与 window join 不同,是两个 KeyedStream 之上的操作,并且需要调用 between() 方法指定偏移区间的上下界。如果想令上下界是开区间,可以调用 upperBoundExclusive()/lowerBoundExclusive() 方法。

interval join 的实现原理及源码分析

org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator

 /**
  * Completes the join operation with the given user function that is executed for each joined pair
  * of elements. This methods allows for passing explicit type information for the output type.
  *
  * @param processJoinFunction The user-defined process join function.
  * @param outputType          The type information for the output type.
  * @param                The output type.
  * @return The transformed {@link DataStream}.
  */
 @PublicEvolving
 public  SingleOutputStreamOperator process(
         ProcessJoinFunction processJoinFunction,
         TypeInformation outputType) {
     Preconditions.checkNotNull(processJoinFunction);
     Preconditions.checkNotNull(outputType);
     
     final ProcessJoinFunction cleanedUdf = left.getExecutionEnvironment().clean(processJoinFunction);
     
     final IntervalJoinOperator operator =
             new IntervalJoinOperator<>(
                     lowerBound,
                     upperBound,
                     lowerBoundInclusive,
                     upperBoundInclusive,
                     left.getType().createSerializer(left.getExecutionConfig()),
                     right.getType().createSerializer(right.getExecutionConfig()),
                     cleanedUdf
             );
     
     return left
             .connect(right)
             .keyBy(keySelector1, keySelector2)
             .transform("Interval Join", outputType, operator);
 }

可见是先对两条流执行 connect() 和 keyBy() 操作,然后利用 IntervalJoinOperator 算子进行转换。在 IntervalJoinOperator 中,会利用两个 MapState 分别缓存左流和右流的数据。

org.apache.flink.streaming.api.operators.co.IntervalJoinOperator#initializeState

private transient MapState>> leftBuffer;
 private transient MapState>> rightBuffer;  
 
 @Override
 public void initializeState(StateInitializationContext context) throws Exception {
     super.initializeState(context);
 
     this.leftBuffer = context.getKeyedStateStore().getMapState(new MapStateDescriptor<>(
         LEFT_BUFFER,
         LongSerializer.INSTANCE,
         new ListSerializer<>(new BufferEntrySerializer<>(leftTypeSerializer))
     ));
 
     this.rightBuffer = context.getKeyedStateStore().getMapState(new MapStateDescriptor<>(
         RIGHT_BUFFER,
         LongSerializer.INSTANCE,
         new ListSerializer<>(new BufferEntrySerializer<>(rightTypeSerializer))
     ));
 }
  • Long 表示事件时间戳

  • List表示该时刻到来的数据记录

当左流和右流有数据到达时,会分别调用 processElement1() 和 processElement2() 方法,它们都调用了 processElement() 方法,代码如下。

/**
    * Process a {@link StreamRecord} from the left stream. Whenever an {@link StreamRecord}
    * arrives at the left stream, it will get added to the left buffer. Possible join candidates
    * for that element will be looked up from the right buffer and if the pair lies within the
    * user defined boundaries, it gets passed to the {@link ProcessJoinFunction}.
    *
    * @param record An incoming record to be joined
    * @throws Exception Can throw an Exception during state access
    */
   @Override
   public void processElement1(StreamRecord record) throws Exception {
     processElement(record, leftBuffer, rightBuffer, lowerBound, upperBound, true);
 }
 
   /**
    * Process a {@link StreamRecord} from the right stream. Whenever a {@link StreamRecord}
    * arrives at the right stream, it will get added to the right buffer. Possible join candidates
    * for that element will be looked up from the left buffer and if the pair lies within the user
    * defined boundaries, it gets passed to the {@link ProcessJoinFunction}.
    *
    * @param record An incoming record to be joined
    * @throws Exception Can throw an exception during state access
    */
   @Override
   public void processElement2(StreamRecord record) throws Exception {
     processElement(record, rightBuffer, leftBuffer, -upperBound, -lowerBound, false);
 }
 
   @SuppressWarnings("unchecked")
   private  void processElement(
       final StreamRecord record,
       final MapState>> ourBuffer,
       final MapState>> otherBuffer,
       final long relativeLowerBound,
       final long relativeUpperBound,
       final boolean isLeft) throws Exception {
 
     final THIS ourValue = record.getValue();
     final long ourTimestamp = record.getTimestamp();
 
     if (ourTimestamp == Long.MIN_VALUE) {
       throw new FlinkException("Long.MIN_VALUE timestamp: Elements used in " +
           "interval stream joins need to have timestamps meaningful timestamps.");
     }
 
     if (isLate(ourTimestamp)) {
       return;
     }
 
     addToBuffer(ourBuffer, ourValue, ourTimestamp);
 
     for (Map.Entry>> bucket: otherBuffer.entries()) {
       final long timestamp  = bucket.getKey();
 
       if (timestamp < ourTimestamp + relativeLowerBound ||
           timestamp > ourTimestamp + relativeUpperBound) {
         continue;
       }
 
       for (BufferEntry entry: bucket.getValue()) {
         if (isLeft) {
           collect((T1) ourValue, (T2) entry.element, ourTimestamp, timestamp);
         } else {
           collect((T1) entry.element, (T2) ourValue, timestamp, ourTimestamp);
         }
       }
     }
 
     long cleanupTime = (relativeUpperBound > 0L) ? ourTimestamp + relativeUpperBound : ourTimestamp;
     if (isLeft) {
       internalTimerService.registerEventTimeTimer(CLEANUP_NAMESPACE_LEFT, cleanupTime);
     } else {
       internalTimerService.registerEventTimeTimer(CLEANUP_NAMESPACE_RIGHT, cleanupTime);
     }
 }
  • 取得当前流 StreamRecord 的时间戳,调用 isLate() 方法判断它是否是迟到数据(即时间戳小于当前水印值),如是则丢弃。

  • 调用 addToBuffer() 方法,将时间戳和数据一起插入当前流对应的 MapState。

  • 遍历另外一个流的 MapState,如果数据满足前述的时间区间条件,则调用 collect() 方法将该条数据投递给用户定义的 ProcessJoinFunction 进行处理。collect() 方法的代码如下,注意结果对应的时间戳是左右流时间戳里较大的那个。

private boolean isLate(long timestamp) {
     long currentWatermark = internalTimerService.currentWatermark();
     return currentWatermark != Long.MIN_VALUE && timestamp < currentWatermark;
 }
 
 private void collect(T1 left, T2 right, long leftTimestamp, long rightTimestamp) throws Exception {
     final long resultTimestamp = Math.max(leftTimestamp, rightTimestamp);
 
     collector.setAbsoluteTimestamp(resultTimestamp);
     context.updateTimestamps(leftTimestamp, rightTimestamp, resultTimestamp);
 
     userFunction.processElement(left, right, context, collector);
 }
 
 private static  void addToBuffer(
     final MapState>> buffer,
     final T value,
     final long timestamp) throws Exception {
     List> elemsInBucket = buffer.get(timestamp);
     if (elemsInBucket == null) {
         elemsInBucket = new ArrayList<>();
     }
     elemsInBucket.add(new BufferEntry<>(value, false));
     buffer.put(timestamp, elemsInBucket);
 }

调用 TimerService.registerEventTimeTimer() 注册时间戳为 timestamp + relativeUpperBound 的定时器,该定时器负责在水印超过区间的上界时执行状态的清理逻辑,防止数据堆积。注意左右流的定时器所属的 namespace 是不同的,具体逻辑则位于 onEventTime() 方法中。

@Override
 public void onEventTime(InternalTimer timer) throws Exception {
 
     long timerTimestamp = timer.getTimestamp();
     String namespace = timer.getNamespace();
 
     logger.trace("onEventTime @ {}", timerTimestamp);
 
     switch (namespace) {
         case CLEANUP_NAMESPACE_LEFT: {
             long timestamp = (upperBound <= 0L) ? timerTimestamp : timerTimestamp - upperBound;
             logger.trace("Removing from left buffer @ {}", timestamp);
             leftBuffer.remove(timestamp);
             break;
         }
         case CLEANUP_NAMESPACE_RIGHT: {
             long timestamp = (lowerBound <= 0L) ? timerTimestamp + lowerBound : timerTimestamp;
             logger.trace("Removing from right buffer @ {}", timestamp);
             rightBuffer.remove(timestamp);
             break;
         }
         default:
             throw new RuntimeException("Invalid namespace " + namespace);
     }
 }

Flink双流join的3种方式及IntervalJoin源码分析_第1张图片

你可能感兴趣的:(Flink,大数据,flink,big,data,spark)