- 深度学习在SSVEP信号分类中的应用分析
自由的晚风
深度学习分类人工智能
目录前言1.SSVEP信号分类的处理流程2.模型输入和数据预处理3.模型结构设计3.1卷积神经网络(CNN)3.2长短期记忆网络(LSTM)4.训练方法与激活函数5.性能评估与挑战6.未来方向前言随着脑机接口(BCI)技术的发展,SSVEP(稳态视觉诱发电位)因其高信息传输速率和短训练时间而成为最受欢迎的BCI范式之一。近年来,深度学习方法在SSVEP信号分类中取得了显著的成果。本文通过对31个深
- 一文读懂!OpenCV 实时人脸识别从 0 到 1,小白也能轻松实操的超详细教程(完整教程及源码)
AI_DL_CODE
opencv人工智能计算机视觉人脸识别
摘要:本文围绕使用OpenCV实现实时人脸识别展开。从环境搭建入手,详细介绍Python及相关库的安装。数据准备环节涵盖收集、标注及预处理步骤。深入阐述特征提取、模型训练方法,包含传统与深度学习方式,还介绍OpenCV预训练模型的使用与评估。详细讲解实时识别过程,包括打开摄像头、逐帧处理及结果显示优化。针对复杂场景,提出光照、姿态、遮挡等问题的解决办法及模型更新维护策略。通过丰富代码示例与解释,助
- 阿里深夜开源QwQ-32B模型,仅需1/10的成本即可比肩R1满血版
伪_装
LLMpython大模型LLM
QWENHUGGINGFACEMODELSCOPEDEMODISCORD凌晨3点,阿里开源了他们全新的推理模型QwQ-32B。大规模强化学习(RL)有潜力超越传统的预训练和后训练方法来提升模型性能。近期的研究表明,强化学习可以显著提高模型的推理能力。例如,DeepSeekR1通过整合冷启动数据和多阶段训练,实现了最先进的性能,使其能够进行深度思考和复杂推理。这一次,我们探讨了大规模强化学习(RL)
- AI语言模型的技术之争:DeepSeek与ChatGPT的架构与训练揭秘
m0_74825466
面试学习路线阿里巴巴chatgpt人工智能语言模型
-CSDN博客目录第一章:DeepSeek与ChatGPT的基础概述1.1DeepSeek简介1.2ChatGPT简介第二章:模型架构对比2.1Transformer架构:核心相似性2.2模型规模与参数第三章:训练方法与技术3.1预训练与微调:基础训练方法3.2强化学习与奖励建模3.3知识蒸馏与量化技术第四章:训练数据与应用4.1训练数据集:数据源的差异4.2特定领域任务:应用场景的差异第五章:代
- 神经进化算法(Neuroevolution) 原理与代码实例讲解
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
神经进化算法,Neuroevolution,进化算法,深度学习,机器学习,遗传算法,神经网络,代码实例1.背景介绍在机器学习领域,神经网络凭借其强大的学习能力和泛化能力,在图像识别、自然语言处理、语音识别等领域取得了显著的成就。然而,传统的神经网络训练方法通常依赖于人工设计的网络结构和参数初始化,这往往需要大量的经验和试错,并且难以找到最优的网络结构和参数。神经进化算法(Neuroevolutio
- STM32实战开发(172):智能体育训练记录系统
嵌入式开发项目
stm32人工智能深度学习单片机嵌入式硬件lstm
引言随着人们对健康和运动的关注,体育训练记录系统变得越来越重要。智能体育训练记录系统能够帮助运动员记录、分析并优化他们的训练数据。通过STM32微控制器结合多种传感器和数据存储模块,本文将介绍如何设计和实现一个智能体育训练记录系统。该系统能够实时采集运动员的训练数据,存储数据并通过分析生成训练报告,帮助运动员优化训练方法。项目目标本项目的目标是实现一个智能体育训练记录系统,能够实时记录运动员在训练
- Meta:基于数据关系的LLM高效预训练
大模型任我行
大模型-模型训练人工智能自然语言处理语言模型论文笔记
标题:Data-EfficientPretrainingwithGroup-LevelDataInfluenceModeling来源:arXiv,2502.14709摘要数据高效的预训练已显示出提高缩放定律的巨大潜力。本文认为有效的预训练数据应该在组级别进行管理,将一组数据点作为一个整体而不是独立的贡献者。为此,我们提出了一种新的数据高效预训练方法GroupLevelDataInfluenceMo
- 深入解析 DeepSeek R1:强化学习如何驱动大模型推理能力的进化
海棠AI实验室
智元启示录人工智能deeplearningDeepSeek-R1
引言在AI竞赛日益激烈的时代,DeepSeek-AI推出了DeepSeekR1,试图以强化学习(RL)直接训练推理能力,而非仅依赖传统的监督微调(SFT)。这一思路不仅为大规模语言模型(LLMs)带来了新的训练范式,还在跨任务推理迁移上表现出潜力。本文将深入解析DeepSeekR1的架构、训练方法和对比实验,并从多维度审视其局限性与未来发展方向。同时,我们也会在文中介绍DeepSeekR1蒸馏到多
- 深度求索:解析DeepSeek R1与V3模型的技术差异
walkskyer
AI探索deepseekdeepseek-r1deepseek-v3
深度求索:解析DeepSeekR1与V3模型的技术差异引言模型定位与核心能力DeepSeekV3应用场景及示例DeepSeekR1应用场景及示例模型架构与训练方法DeepSeekV3的架构特点DeepSeekR1的强化学习策略性能表现与基准测试DeepSeekV3的性能优势领域DeepSeekR1的性能优势领域应用场景与部署成本分析DeepSeekV3的适用场景及部署成本优势DeepSeekR1的
- 第三讲-神经网络八股
loveysuxin
Tensorflowtensorflow
一、搭建神经网络六部法tf.keras搭建神经网络六部法1、import相关模块 2、train,test #训练集、测试集3、model=tf.keras.models.Sequential #逐层搭建网络结构4、model.compile #配置训练方法,选择训练使用的优化器、损失函数和最终评价指标5、model.fit #执行训练过程,告知训练集和测试集的输入值和标签、每个batc
- DeepSeek 和 Qwen 模型快速部署指南
moton2017
深度学习运维模型部署DeepSeekQwen大型语言模型LLM人工智能AI
导读:DeepSeek-V3&DeepSeek-R1模型对比特性DeepSeek-V3DeepSeek-R1模型大小总参数量6710亿(671B),MoE架构,每个token激活370亿参数总参数量与V3相当,基于DeepSeek-V3-Base,采用类似的MoE架构训练方法包含预训练、监督微调(SFT)和强化学习(RL),使用14.8兆高品质文本进行预训练引入多阶段训练流程,冷启动微调后进行推理
- 跨语言语义理解与生成:多语言预训练方法及一致性优化策略
网罗开发
AI大模型人工智能深度学习负载均衡
网罗开发(小红书、快手、视频号同名) 大家好,我是展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、HarmonyOS、Java、Python等方向。在移动端开发、鸿蒙开发、物联网、嵌入式、云原生、开源等领域有深厚造诣。图书作者:《ESP32-C3物联网工程开发实战》图书作者:《SwiftUI入门,进阶与实战》超级个体:CO
- SFT(监督微调)和RLHF(基于人类反馈的强化学习)的区别
钟小宇
LLM人工智能语言模型
SFT(监督微调)和RLHF(基于人类反馈的强化学习)的区别STF(SupervisedFine-Tuning)和RLHF(ReinforcementLearningfromHumanFeedback)是两种不同的模型训练方法,分别用于不同的阶段和目的。以下是它们的主要区别:1.方法概述STF(监督微调):定义:STF是指在已经预训练好的模型基础上,使用标注好的数据进一步训练模型,使其在特定任务上
- 【DeepSeek】一文详解GRPO算法——为什么能减少大模型训练资源?
FF-Studio
DeepSeekR1算法
GRPO,一种新的强化学习方法,是DeepSeekR1使用到的训练方法。今天的这篇博客文章,笔者会从零开始,层层递进地为各位介绍一种在强化学习中极具实用价值的技术——GRPO(GroupRelativePolicyOptimization)。如果你是第一次听说这个概念,也不必慌张,笔者会带领你从最基础的强化学习背景知识讲起,一步步剖析其来龙去脉,然后再结合实例讲解GRPO在实际应用中的思路和操作示
- DeepSeek R1 与 OpenAI O1:机器学习模型的巅峰对决
学无止尽5
机器学习人工智能
我的个人主页我的专栏:人工智能领域、java-数据结构、Javase、C语言,希望能帮助到大家!!!点赞收藏❤一、引言在机器学习的广袤天地中,大型语言模型(LLM)无疑是最为璀璨的明珠。它们凭借卓越的语言理解与生成能力,正以前所未有的方式重塑着我们与信息交互的模式。DeepSeekR1和OpenAIO1作为其中的佼佼者,代表了当前技术的前沿水准,在架构设计、训练方法、性能表现以及应用场景等诸多层面
- LLaMA3大模型技术全网最全解析——模型架构与训练方法(收录于GPT-4/ChatGPT技术与产业分析)
chenweiPhD
人工智能深度学习语言模型架构
Meta在周四(4月18日)发布了其最新大型语言模型LLaMA3。该模型将被集成到其虚拟助手MetaAI中。Meta自称8B和70B的LLaMA3是当今8B和70B参数规模的最佳模型,并在推理、代码生成和指令跟踪方面有了很大进步。(点赞是我们分享的动力)--------------------------------------------------主编作者陈巍博士,高级职称,曾担任华为系相关自
- DeepSeek-R1-Zero 与 DeepSeek-R1 的异同与优劣分析
AI生成曾小健
Deepseek原理与使用人工智能
DeepSeek-R1-Zero与DeepSeek-R1的异同与优劣分析一、相同点核心训练方法:两者均基于强化学习(RL),采用GroupRelativePolicyOptimization(GRPO)算法,通过组内样本的奖励相对比较优化策略模型。目标均为提升语言模型的复杂推理能力(如数学、代码、科学推理)。基础模型:均以DeepSeek-V3-Base作为初始模型,共享相同的架构
- 【必看】凭啥?DeepSeek如何用1/179的训练成本干到GPT-4o 98%性能
大F的智能小课
人工智能算法
一、DeepSeek降低训练成本的核心方法1.1创新训练方法DeepSeek通过独特的训练方案显著降低了训练成本。其核心策略包括减少监督微调(SFT)步骤,仅依赖强化学习(RL)技术。DeepSeek-R1-Zero版本完全跳过SFT,仅通过RL进行训练。尽管初期计算开销较大,但添加少量冷启动数据后,训练稳定性和模型推理能力大幅提升。此外,DeepSeek还采用了组相对策略优化(GRPO)算法替代
- DeepSeek-V3:模型与权重全面解析
步子哥
AGI通用人工智能人工智能
DeepSeek-V3是一款开创性的混合专家(Mixture-of-Experts,MoE)语言模型,以其创新的架构设计、高效的训练方法和卓越的性能,成为开源大语言模型领域的标杆。本文将详细解析其模型架构、权重结构和量化技术,并结合其在实际应用中的表现,带您全面了解DeepSeek-V3的技术亮点。1.模型概述DeepSeek-V3是一款拥有6710亿总参数和每个令牌激活370亿参数的混合专家语言
- 神经网络的训练过程详解
西洲啊
AI神经网络人工智能深度学习
在深度学习领域中,训练一个神经网络是一项复杂但系统的工作过程。下面将从基本概念到具体步骤逐步阐述神经网络的训练方法一、神经网络的基本概念神经网络的结构输入层:接收外部数据,通常为多维向量。隐藏层:通过激活函数对输入数据进行非线性变换,提高模型表达能力。输出层:根据隐藏层的状态产生预测结果。参数每个连接之间都有权重和偏置,用来调整信息传递强度和初始偏置值。二、训练过程概述初始化随机初始化权重和偏置,
- 混合专家模型 (MoE) 最全详细图解
DFCED
人工智能算法前沿AIGC算法学术工业技术前沿混合专家网络MOEDeepSeek人工智能深度学习大模型
随着Mixtral8x7B(announcement,modelcard)的推出,一种称为混合专家模型(MixedExpertModels,简称MoEs)的Transformer模型在开源人工智能社区引起了广泛关注。在本篇博文中,我们将深入探讨MoEs的核心组件、训练方法,以及在推理过程中需要考量的各种因素简短总结混合专家模型(MoEs):与稠密模型相比,预训练速度更快与具有相同参数数量的模型相比
- 一文搞懂DeepSeek - 开源模型R1
程序员辣条
开源人工智能Agent大模型大模型教程大模型项目DeepSeek
DeepSeek-R1作为一款开源的大型语言模型,在数学、编程和推理等多个任务上表现出了强大的性能。其纯强化学习的训练方法、开源与低成本的特性以及技术创新使得DeepSeek-R1成为了AI领域的一颗新星。**在多个基准测试中,DeepSeek-R1的表现优于或接近OpenAIo1。**例如,在AIME2024数学测试中,DeepSeek-R1的准确率接近OpenAIo1-0912的水平;在MAT
- 大语言模型多token预测技术
deepdata_cn
NLP语言模型人工智能自然语言处理
近年来,大语言模型(LLM)在自然语言处理领域取得了突破性进展,凭借其强大的语言理解和生成能力,在各种NLP任务中展现出惊人的性能。传统的基于下一个token预测的训练方法虽简单有效,但在获取语言、世界知识和推理能力方面效率不高。且这种方法使模型过于关注局部模式,忽视了“困难”的决策,导致当前先进的下一个token预测器需要比人类儿童多几个数量级的数据才能达到相同的语言水平。人类儿童在学习语言时使
- DeepSeek R1和V3区别
@Rocky
大模型语言模型
DeepSeekR1和V3是深度求索(DeepSeek)推出的两款大模型,尽管基于相似的技术框架(如混合专家架构MoE),但在设计目标、训练方法、性能表现和应用场景上存在显著差异。以下是两者的主要区别:1.模型定位与核心能力DeepSeek-V3定位为通用型大语言模型,专注于自然语言处理(NLP)、知识问答和内容生成等任务。其优势在于高效的多模态处理能力(文本、图像、音频、视频)和较低的训练成本(
- DeepSeek-R1真算得上开源吗?
人工智能
1啥是DeepSeek-R1?如你曾为一道棘手数学题绞尽脑汁,就明白多花时间仔细思考多重要。OpenAIo1模型证明,当LLM在推理时,通过增加计算量进行类似训练后,它们在数学、编程和逻辑等推理任务上的表现显著提升。然而,OpenAI推理模型的训练方法一直是秘密。直到DeepSeek发布DeepSeek-R1模型,瞬间引爆互联网(甚至影响股市!)。除了性能达到或超越o1,DeepSeek-R1发布
- 基于YOLOv11的目标检测系统
夜思、晨
YOLO目标检测人工智能
基于YOLOv11的目标检测系统前言YOLO11是UltralyticsYOLO是实时物体检测器系列中的最新产品,以最先进的精度、速度和效率重新定义了可能实现的目标。在之前YOLO版本令人印象深刻的进步基础上,YOLO11在架构和训练方法上进行了重大改进,使其成为广泛的计算机视觉任务的多功能选择。YOLOv11在COCO数据集的表现如下图:一、软件简介这款软件是一种基于最新YOLOv11算法的目标
- MOE模型入门
云帆@
AI人工智能
一、目录定义:MOE架构代表类型如何解决expert平衡的?而不是集中到某一专家。如何训练、微调MOE模型?基础架构优缺点不同MOE模型实现方式、训练方法二、实现定义:MOE架构MOE:混合专家模型,多个专家共同决策的模型。实现:将transformer模型中的每个前馈网络(FFN)层替换为MoE层,其中MoE层由两个核心部分组成:一个路由器(或者叫门控网络)和若干数量的专家。代表类型谷歌MOE,
- 【llm对话系统】大模型 Llama、Qwen 和 ChatGLM 的网络结构和训练方法对比
kakaZhui
llama人工智能AIGCchatgptpython
1.引言近年来,大型语言模型(LLM)取得了令人瞩目的进展,其中Llama、Qwen和ChatGLM是三个备受关注的开源模型。它们都在Transformer架构的基础上进行了改进和优化,并在各种NLP任务上取得了优异的性能。本文将深入分析Llama、Qwen和ChatGLM的网络结构和训练方法,比较它们的异同以及各自的优势。2.模型结构对比特性LlamaQwenChatGLM基础架构Decoder
- LitGPT - 20多个高性能LLM,具有预训练、微调和大规模部署的recipes
伊织产研
#AI开源项目LitGPT预训练微调部署
文章目录一、关于LitGPT二、快速启动安装LitGPT高级安装选项从20多个LLM中进行选择三、工作流程1、所有工作流程2、微调LLM3、部署LLM4、评估LLM5、测试LLM6、预训练LLM7、继续预训练LLM四、最先进的功能五、训练方法示例六、项目亮点教程一、关于LitGPTLitGPT用于使用、微调、预训练和部署LLMLightning快速⚡⚡每个LLM都是从头开始实现的,没有抽象和完全控
- 从 0 到 1,DEEPseek 大模型瞬间 “霸榜” AI 赛道的秘密
羑悻的小杀马特.
人工智能deepseekAI大模型
大家都知道,科技发展特别快,AI更是突飞猛进。DeepSeek大模型,就像一匹黑马,在AI领域迅速冒尖。它和我们常用的搜索引擎、聊天机器人都有联系,到底有多大能耐?让我们一起揭开它的神秘面纱。deepseek官网传送门:DeepSeek下面就对本文标题来剖析一下:目录一·本篇背景:二.技术实力:突破创新的基石:2.1强大的模型能力:2.1.1高效的训练方法:2.2.2优化的推理速度:三·市场策略:
- 对于规范和实现,你会混淆吗?
yangshangchuan
HotSpot
昨晚和朋友聊天,喝了点咖啡,由于我经常喝茶,很长时间没喝咖啡了,所以失眠了,于是起床读JVM规范,读完后在朋友圈发了一条信息:
JVM Run-Time Data Areas:The Java Virtual Machine defines various run-time data areas that are used during execution of a program. So
- android 网络
百合不是茶
网络
android的网络编程和java的一样没什么好分析的都是一些死的照着写就可以了,所以记录下来 方便查找 , 服务器使用的是TomCat
服务器代码; servlet的使用需要在xml中注册
package servlet;
import java.io.IOException;
import java.util.Arr
- [读书笔记]读法拉第传
comsci
读书笔记
1831年的时候,一年可以赚到1000英镑的人..应该很少的...
要成为一个科学家,没有足够的资金支持,很多实验都无法完成
但是当钱赚够了以后....就不能够一直在商业和市场中徘徊......
- 随机数的产生
沐刃青蛟
随机数
c++中阐述随机数的方法有两种:
一是产生假随机数(不管操作多少次,所产生的数都不会改变)
这类随机数是使用了默认的种子值产生的,所以每次都是一样的。
//默认种子
for (int i = 0; i < 5; i++)
{
cout<<
- PHP检测函数所在的文件名
IT独行者
PHP函数
很简单的功能,用到PHP中的反射机制,具体使用的是ReflectionFunction类,可以获取指定函数所在PHP脚本中的具体位置。 创建引用脚本。
代码:
[php]
view plain
copy
// Filename: functions.php
<?php&nbs
- 银行各系统功能简介
文强chu
金融
银行各系统功能简介 业务系统 核心业务系统 业务功能包括:总账管理、卡系统管理、客户信息管理、额度控管、存款、贷款、资金业务、国际结算、支付结算、对外接口等 清分清算系统 以清算日期为准,将账务类交易、非账务类交易的手续费、代理费、网络服务费等相关费用,按费用类型计算应收、应付金额,经过清算人员确认后上送核心系统完成结算的过程 国际结算系
- Python学习1(pip django 安装以及第一个project)
小桔子
pythondjangopip
最近开始学习python,要安装个pip的工具。听说这个工具很强大,安装了它,在安装第三方工具的话so easy!然后也下载了,按照别人给的教程开始安装,奶奶的怎么也安装不上!
第一步:官方下载pip-1.5.6.tar.gz, https://pypi.python.org/pypi/pip easy!
第二部:解压这个压缩文件,会看到一个setup.p
- php 数组
aichenglong
PHP排序数组循环多维数组
1 php中的创建数组
$product = array('tires','oil','spark');//array()实际上是语言结构而不 是函数
2 如果需要创建一个升序的排列的数字保存在一个数组中,可以使用range()函数来自动创建数组
$numbers=range(1,10)//1 2 3 4 5 6 7 8 9 10
$numbers=range(1,10,
- 安装python2.7
AILIKES
python
安装python2.7
1、下载可从 http://www.python.org/进行下载#wget https://www.python.org/ftp/python/2.7.10/Python-2.7.10.tgz
2、复制解压
#mkdir -p /opt/usr/python
#cp /opt/soft/Python-2
- java异常的处理探讨
百合不是茶
JAVA异常
//java异常
/*
1,了解java 中的异常处理机制,有三种操作
a,声明异常
b,抛出异常
c,捕获异常
2,学会使用try-catch-finally来处理异常
3,学会如何声明异常和抛出异常
4,学会创建自己的异常
*/
//2,学会使用try-catch-finally来处理异常
- getElementsByName实例
bijian1013
element
实例1:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/x
- 探索JUnit4扩展:Runner
bijian1013
java单元测试JUnit
参加敏捷培训时,教练提到Junit4的Runner和Rule,于是特上网查一下,发现很多都讲的太理论,或者是举的例子实在是太牵强。多搜索了几下,搜索到两篇我觉得写的非常好的文章。
文章地址:http://www.blogjava.net/jiangshachina/archive/20
- [MongoDB学习笔记二]MongoDB副本集
bit1129
mongodb
1. 副本集的特性
1)一台主服务器(Primary),多台从服务器(Secondary)
2)Primary挂了之后,从服务器自动完成从它们之中选举一台服务器作为主服务器,继续工作,这就解决了单点故障,因此,在这种情况下,MongoDB集群能够继续工作
3)挂了的主服务器恢复到集群中只能以Secondary服务器的角色加入进来
2
- 【Spark八十一】Hive in the spark assembly
bit1129
assembly
Spark SQL supports most commonly used features of HiveQL. However, different HiveQL statements are executed in different manners:
1. DDL statements (e.g. CREATE TABLE, DROP TABLE, etc.)
- Nginx问题定位之监控进程异常退出
ronin47
nginx在运行过程中是否稳定,是否有异常退出过?这里总结几项平时会用到的小技巧。
1. 在error.log中查看是否有signal项,如果有,看看signal是多少。
比如,这是一个异常退出的情况:
$grep signal error.log
2012/12/24 16:39:56 [alert] 13661#0: worker process 13666 exited on s
- No grammar constraints (DTD or XML schema).....两种解决方法
byalias
xml
方法一:常用方法 关闭XML验证
工具栏:windows => preferences => xml => xml files => validation => Indicate when no grammar is specified:选择Ignore即可。
方法二:(个人推荐)
添加 内容如下
<?xml version=
- Netty源码学习-DefaultChannelPipeline
bylijinnan
netty
package com.ljn.channel;
/**
* ChannelPipeline采用的是Intercepting Filter 模式
* 但由于用到两个双向链表和内部类,这个模式看起来不是那么明显,需要仔细查看调用过程才发现
*
* 下面对ChannelPipeline作一个模拟,只模拟关键代码:
*/
public class Pipeline {
- MYSQL数据库常用备份及恢复语句
chicony
mysql
备份MySQL数据库的命令,可以加选不同的参数选项来实现不同格式的要求。
mysqldump -h主机 -u用户名 -p密码 数据库名 > 文件
备份MySQL数据库为带删除表的格式,能够让该备份覆盖已有数据库而不需要手动删除原有数据库。
mysqldump -–add-drop-table -uusername -ppassword databasename > ba
- 小白谈谈云计算--基于Google三大论文
CrazyMizzz
Google云计算GFS
之前在没有接触到云计算之前,只是对云计算有一点点模糊的概念,觉得这是一个很高大上的东西,似乎离我们大一的还很远。后来有机会上了一节云计算的普及课程吧,并且在之前的一周里拜读了谷歌三大论文。不敢说理解,至少囫囵吞枣啃下了一大堆看不明白的理论。现在就简单聊聊我对于云计算的了解。
我先说说GFS
&n
- hadoop 平衡空间设置方法
daizj
hadoopbalancer
在hdfs-site.xml中增加设置balance的带宽,默认只有1M:
<property>
<name>dfs.balance.bandwidthPerSec</name>
<value>10485760</value>
<description&g
- Eclipse程序员要掌握的常用快捷键
dcj3sjt126com
编程
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可以那么勤奋,每天都孜孜不倦得
- Android学习之路
dcj3sjt126com
Android学习
转自:http://blog.csdn.net/ryantang03/article/details/6901459
以前有J2EE基础,接触JAVA也有两三年的时间了,上手Android并不困难,思维上稍微转变一下就可以很快适应。以前做的都是WEB项目,现今体验移动终端项目,让我越来越觉得移动互联网应用是未来的主宰。
下面说说我学习Android的感受,我学Android首先是看MARS的视
- java 遍历Map的四种方法
eksliang
javaHashMapjava 遍历Map的四种方法
转载请出自出处:
http://eksliang.iteye.com/blog/2059996
package com.ickes;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Map.Entry;
/**
* 遍历Map的四种方式
- 【精典】数据库相关相关
gengzg
数据库
package C3P0;
import java.sql.Connection;
import java.sql.SQLException;
import java.beans.PropertyVetoException;
import com.mchange.v2.c3p0.ComboPooledDataSource;
public class DBPool{
- 自动补全
huyana_town
自动补全
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml&quo
- jquery在线预览PDF文件,打开PDF文件
天梯梦
jquery
最主要的是使用到了一个jquery的插件jquery.media.js,使用这个插件就很容易实现了。
核心代码
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.
- ViewPager刷新单个页面的方法
lovelease
androidviewpagertag刷新
使用ViewPager做滑动切换图片的效果时,如果图片是从网络下载的,那么再子线程中下载完图片时我们会使用handler通知UI线程,然后UI线程就可以调用mViewPager.getAdapter().notifyDataSetChanged()进行页面的刷新,但是viewpager不同于listview,你会发现单纯的调用notifyDataSetChanged()并不能刷新页面
- 利用按位取反(~)从复合枚举值里清除枚举值
草料场
enum
以 C# 中的 System.Drawing.FontStyle 为例。
如果需要同时有多种效果,
如:“粗体”和“下划线”的效果,可以用按位或(|)
FontStyle style = FontStyle.Bold | FontStyle.Underline;
如果需要去除 style 里的某一种效果,
- Linux系统新手学习的11点建议
刘星宇
编程工作linux脚本
随着Linux应用的扩展许多朋友开始接触Linux,根据学习Windwos的经验往往有一些茫然的感觉:不知从何处开始学起。这里介绍学习Linux的一些建议。
一、从基础开始:常常有些朋友在Linux论坛问一些问题,不过,其中大多数的问题都是很基础的。例如:为什么我使用一个命令的时候,系统告诉我找不到该目录,我要如何限制使用者的权限等问题,这些问题其实都不是很难的,只要了解了 Linu
- hibernate dao层应用之HibernateDaoSupport二次封装
wangzhezichuan
DAOHibernate
/**
* <p>方法描述:sql语句查询 返回List<Class> </p>
* <p>方法备注: Class 只能是自定义类 </p>
* @param calzz
* @param sql
* @return
* <p>创建人:王川</p>
* <p>创建时间:Jul