Python机器学习实战-特征重要性分析方法(5):递归特征消除(附源码和实现效果)

实现功能

递归地删除特征并查看它如何影响模型性能。删除时会导致更大下降的特征更重要。

实现代码

from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import RFE
import pandas as pd
from sklearn.datasets import load_breast_cancer
import matplotlib.pyplot as plt

X, y = load_breast_cancer(return_X_y=True)
df = pd.DataFrame(X, columns=range(30))
df['y'] = y

rf = RandomForestClassifier()

rfe = RFE(rf, n_features_to_select=10)
rfe.fit(X, y)

print(rfe.ranking_)

实现效果

本人读研期间发表5篇SCI数据挖掘相关论文,现在某研究院从事数据挖掘相关科研工作,对数据挖掘有一定认知和理解,会结合自身科研实践经历不定期分享关于python机器学习、深度学习、数据挖掘基础知识与案例。

致力于只做原创,以最简单的方式理解和学习,关注我一起交流成长。

邀请三个朋友关注V订阅号:数据杂坛,即可在后台联系我获取相关数据集和源码,送有关数据分析、数据挖掘、机器学习、深度学习相关的电子书籍。

你可能感兴趣的:(机器学习,python,机器学习,开发语言)