- 在Carla上应用深度强化学习实现自动驾驶(一)
寒霜似karry
自动驾驶人工智能机器学习
carla环境下基于强化学习的自动驾驶_哔哩哔哩_bilibili本篇文章是小编在pycharm上自己手敲代码学习自动驾驶的第一篇文章,主要讲述如何在Carla中控制我们自己生成的汽车并且使用rgb摄像头传感器获取图像数据。以下代码参考自:(如有侵权,请联系我将立即删除)使用Carla和Python的自动驾驶汽车第2部分——控制汽车并获取传感器数据-CSDN博客1、导入carla(其中的路径根据自
- 多智能体深度强化学习:一项综述 Multi-agent deep reinforcement learning: a survey
资源存储库
笔记
Abstract抽象Theadvancesinreinforcementlearninghaverecordedsublimesuccessinvariousdomains.Althoughthemulti-agentdomainhasbeenovershadowedbyitssingle-agentcounterpartduringthisprogress,multi-agentreinforc
- 用于人形机器人强化学习运动的神经网络架构分析
1.引言:人形机器人运动强化学习中的架构探索人形机器人具备在多样化环境中自主运行的巨大潜力,有望缓解工厂劳动力短缺、协助居家养老以及探索新星球等问题。其拟人化的特性使其在执行类人操作任务(如运动和操纵)方面具有独特优势。深度强化学习(DRL)作为一种前景广阔的无模型方法,能够有效控制双足运动,实现复杂行为的自主学习,而无需显式动力学模型。1.1人形机器人运动强化学习的机遇与挑战尽管DRL取得了显著
- 【EI复现】基于深度强化学习的微能源网能量管理与优化策略研究(Python代码实现)
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述一、微能源网能量管理的基本概念与核心需求二、深度强化学习(DRL)在微能源网中的应用优势三、关键技术挑战四、现有基于DRL的优化策略案例五、相关研究文档的典型结构与撰写规范六、结论与未来方向2运行结果2.1有/无策略奖励2.2训练结果12.2训练结果23参考文献
- AlphaStar 星际首秀,人工智能走向星辰大海
谷歌开发者
文/王晶,资深工程师,GoogleBrain团队作者王晶,现为GoogleBrain团队的资深工程师,主要致力深度强化学习的研发,和DeepMind团队在强化学习的应用上有许多合作。北京时间1月25日凌晨2点,DeepMind直播了他们的AIAlphaStar和人类顶尖的职业电竞选手对战星际争霸2。根据DeepMind介绍,AlphaStar在2018年12月10日和19日先后以5:0全胜的战绩击
- AI 在自动驾驶路径规划中的深度强化学习优化
QuantumWalker
人工智能自动驾驶机器学习
```htmlAI在自动驾驶路径规划中的深度强化学习优化在当今快速发展的科技领域中,人工智能(AI)的应用正在不断拓展其边界。特别是在自动驾驶技术中,AI的应用已经从简单的感知和识别发展到了复杂的决策和控制阶段。其中,深度强化学习作为AI的一个重要分支,在自动驾驶路径规划中发挥着越来越重要的作用。一、深度强化学习简介深度强化学习是一种结合了深度学习和强化学习的机器学习方法。它通过让智能体在环境中进
- 从代码学习深度强化学习 - REINFORCE 算法 PyTorch版
飞雪白鹿€
深度强化学习pytorch版pytorchDRL
文章目录前言**一、理论基础:什么是策略梯度?****1.1基于价值vs.基于策略****1.2策略梯度(PolicyGradient)****1.3REINFORCE算法:蒙特卡洛策略梯度****1.4REINFORCE算法流程****二、PyTorch代码实践****2.1环境与辅助函数****2.2核心算法实现****2.3训练与结果****总结**前言欢迎来到“从代码学习深度强化学习”系列
- 会议论文_AI会议 || 如何rebuttal学术论文?
深度强化学习实验室报道来源:https://zhuanlan.zhihu.com/p/104298923作者:魏秀参编辑:DeepRL最近,恰逢CVPR2020rebuttal之前,本文就rebuttle相关的内容进行总结,学术论文是发布自己或团队最新研究进展正式且最快捷的途径,也是和同行交流想法最方便、高效的方式。当同行评议(Peerreview)作为学术成果正式发布的必经之路已运行200余年[
- 深度强化学习应用:基于Double DQN算法的移动机器人路径跟踪技术解析
威哥说编程
算法
前言随着智能控制与机器人技术的不断发展,深度强化学习(DRL)作为一种具有强大自学习能力的技术,已经在机器人领域获得了广泛应用。尤其是在路径跟踪问题中,传统的控制算法往往依赖于模型和假设,而深度强化学习则能够通过大量的训练数据让机器人自主学习如何优化其行为策略,从而实现高效的路径跟踪。本文将深入探讨基于**DoubleDQN(DoubleDeepQ-Network)**算法的移动机器人路径跟踪问题
- (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为使用深度强化学习和模仿学习训练智能代理的环境
struggle2025
游戏学习
一、软件介绍文末提供程序和源码下载(ML-Agents)是一个开源项目,使游戏和模拟能够用作训练智能代理的环境。我们提供最先进算法的实现(基于PyTorch),使游戏开发人员和业余爱好者能够轻松训练2D、3D和VR/AR游戏的智能代理。研究人员还可以使用提供的易于使用的PythonAPI来使用强化学习、模仿学习、神经进化或任何其他方法训练代理。这些经过训练的代理可用于多种用途,包括控制NPC行为(
- PyTorch深度强化学习路径规划, SAC-Auto路径规划, Soft Actor-Critic算法, SAC-pytorch,激光雷达Lidar避障,激光雷达仿真模拟,Adaptive-SAC附
Matlab大师兄
pytorch算法人工智能
✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。往期回顾关注个人主页:Matlab科研工作室个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。内容介绍在日益复杂的自主系统领域,路径规划作为核心功能,其重要性不言而喻。尤其在动态且不确定的环境中,如何为移动平台(如自动驾驶车辆、无人机或机器人)生成安全、高效且最优的路径,是一
- 用深度强化学习玩atari游戏_Pytorch深度强化学习 1.用DQN解决Atari game
我一直对强化学习感兴趣,这学期正好选了一门强化学习的课,第一次作业是让复现DQN。这几年也看了不少DQN的代码,但要自己实现起来,还是犯晕,效率很低。这篇文章从深度强化学习所需的元素出发,达到用DQN解决atarigames的目的。1.Observe,Value,Act强化学习研究的是Agent和环境交互中如何学习最优策略,以获得最大收益。Agent需要能够观察环境(observe)的到所处的状态
- 基于深度强化学习(Deep Q-Network, DQN)的运输路径优化系统
欣然~
python
这是一个基于深度强化学习(DeepQ-Network,DQN)的运输路径优化系统。代码主要包含以下几个部分:1.导入库importnumpyasnpimportgymfromgymimportspacesimportmatplotlib.pyplotaspltfrommatplotlib.colorsimportLinearSegmentedColormapimportrandomimportto
- 基于深度强化学习的Scrapy-Redis分布式爬虫动态调度策略研究
广州正荣
人工智能科技爬虫
在大数据时代,网络数据的采集与分析变得至关重要,分布式爬虫作为高效获取海量数据的工具,被广泛应用于各类场景。然而,传统的爬虫调度策略在面对复杂多变的网络环境和动态的抓取需求时,往往存在效率低下、资源浪费等问题。我们将探讨如何将深度强化学习技术与Scrapy-Redis分布式爬虫框架相结合,构建动态调度策略,以提升爬虫的性能与适应性。一、Scrapy-Redis分布式爬虫框架概述Scrapy是Pyt
- 深度强化学习实战:玩转 Atari 游戏
谷雪_658
游戏python开发语言
在人工智能技术蓬勃发展的当下,深度强化学习凭借其在复杂决策场景中的出色表现,成为众多研究人员和开发者关注的焦点。Atari游戏系列以其丰富的游戏环境和多样化的任务设定,成为深度强化学习算法研究与实践的经典测试平台。通过在Atari游戏中应用深度强化学习算法,不仅能够深入理解强化学习的核心原理,还能探索其在实际场景中的应用潜力。本文将带领读者从零开始,通过实战操作,掌握使用深度强化学习算法玩转Ata
- 【推荐算法】推荐算法演进史:从协同过滤到深度强化学习
白熊188
推荐算法推荐算法算法机器学习
推荐算法演进史:从协同过滤到深度强化学习一、传统推荐时代:协同过滤的奠基(1990s-2006)1.1算法背景:信息爆炸的挑战1.2核心算法:协同过滤1.3局限性二、深度学习黎明:神经网络初探(2010-2015)2.1算法背景:深度学习的崛起2.2奠基模型:DeepCrossing2.3NeuralCF:协同过滤的神经网络化三、特征交叉革命:结构创新浪潮(2016-2017)3.1Wide&De
- 深度强化学习赋能城市消防优化,中国科学院团队提出 DRL 新方法破解设施配置难题
hyperai
在城市建设与发展中,地理空间优化至关重要。从工业园区选址,到公共服务设施布局,它都发挥着关键作用。但传统求解方法存在诸多局限,如今,深度学习技术为其带来了新的转机。近日,在中国地理学会地理模型与地理信息分析专业委员会2025年学术年会上,来自中国科学院空天信息创新研究院的梁浩健博士在「地理空间优化」这一专题下,以「基于分层深度强化学习的城市应急消防设施配置优化方法研究」为题进行了成果汇报演讲,并从
- 强化学习Reinforcement Learning与逆强化学习:理论与实践
AGI大模型与大数据研究院
AI大模型应用开发实战javapythonjavascriptkotlingolang架构人工智能
强化学习,逆强化学习,强化学习算法,逆强化学习算法,深度强化学习,应用场景1.背景介绍在人工智能领域,强化学习(ReinforcementLearning,RL)作为一种模仿人类学习的智能算法,近年来取得了显著进展,并在机器人控制、游戏AI、推荐系统等领域展现出强大的应用潜力。强化学习的核心思想是通过试错学习,让智能体在与环境交互的过程中不断优化策略,以最大化累积的奖励。然而,在现实世界中,获取精
- [智能算法]蚁群算法原理与TSP问题示例
七刀
智能算法算法
目录编辑一、生物行为启发的智能优化算法1.1自然界的群体智能现象1.2人工蚁群算法核心思想二、算法在组合优化中的应用演进2.1经典TSP问题建模2.2算法流程优化三、TSP问题实战:Python实现与可视化3.1算法核心类设计3.2参数敏感性实验3.3可视化分析四、关键参数调优指南4.1基准参数范围4.2动态调参策略4.3性能优化技巧五、扩展应用与前沿方向5.1多目标优化问题5.2深度强化学习融合
- [特殊字符] 基于深度强化学习的机器人路径规划优化方案:从理论到实战
2506_92092175
python
摘要本文提出一种融合深度确定性策略梯度(DDPG)与图卷积网络(GCN)的混合架构,针对高动态环境下移动机器人路径规划问题展开研究。通过自研仿真平台验证,该方案在动态障碍物规避、路径平滑度等维度较传统A*算法提升显著,同时兼顾实时性要求。完整代码与训练日志已开源至GitHub,诚邀技术同仁共同探讨。一、核心痛点分析1.1传统算法局限性算法类型优势劣势Dijkstra理论最优性计算复杂度O(V²),
- 强化学习推动 AI 智能物流路径规划的智能化转型
AIGC应用创新大全
人工智能ai
强化学习推动AI智能物流路径规划的智能化转型关键词:强化学习、智能物流、路径规划、Q-learning、深度强化学习、动态优化、仓储自动化摘要:本文探讨了强化学习技术在智能物流路径规划中的应用与创新。我们将从基础概念出发,逐步深入强化学习的核心算法原理,并通过实际案例展示其在物流优化中的强大能力。文章还将分析当前技术挑战和未来发展趋势,为读者提供全面的技术视角和实践指导。背景介绍目的和范围本文旨在
- 【Python】异步优势演员-评论家(A3C)算法在Python中的实现与应用
蒙娜丽宁
Python杂谈python算法开发语言
《PythonOpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界在深度强化学习(DRL)领域,异步优势演员-评论家(A3C)算法作为一种高效的强化学习方法,广泛应用于各种决策问题和智能控制领域。A3C算法通过使用多个线程并行地探索环境,提高了训练效率并减少了计算资源的消耗。本文详细介绍了A3C算法的核心原理,并通过P
- 基于深度强化学习的网约车动态路径规划
罗伯特之技术屋
行业数字化研究及信息化建设专栏智能科学与技术专栏java开发语言
摘要随着移动互联网的快速发展,许多利用手机App打车的网约车平台也应运而生.这些网约车平台大大减少了网约车的空驶时间和乘客等待时间,从而提高了交通效率.作为平台核心模块,网约车路径规划问题致力于调度空闲的网约车以服务潜在的乘客,从而提升平台的运营效率,近年来受到广泛关注.现有研究主要采用基于值函数的深度强化学习算法(如deepQ-network,DQN)来解决这一问题.然而,由于基于值函数的方法存
- 基于LSTM-Transformer混合模型实现股票价格多变量时序预测(PyTorch版)
矩阵猫咪
lstmtransformerpytorch深度学习scikit-learn
前言系列专栏:【深度学习:算法项目实战】✨︎涉及医疗健康、财经金融、商业零售、食品饮料、运动健身、交通运输、环境科学、社交媒体以及文本和图像处理等诸多领域,讨论了各种复杂的深度神经网络思想,如卷积神经网络、循环神经网络、生成对抗网络、门控循环单元、长短期记忆、自然语言处理、深度强化学习、大型语言模型和迁移学习。在金融市场的分析中,股票价格预测一直是一个充满挑战且备受关注的领域。Transforme
- 深度 Qlearning:深度Qlearning VS DQN
SuperAGI2025
AI大模型应用开发宝典javapythonjavascriptkotlingolang架构人工智能
深度Q-learning:深度Q-learningVSDQN1.背景介绍1.1问题由来深度强化学习(DeepReinforcementLearning,DRL)是近年来人工智能领域的重要研究方向,旨在通过深度神经网络来学习和优化强化学习(ReinforcementLearning,RL)问题。其中,深度Q-learning和DQN(DeepQ-Networks)是两种最为经典的深度强化学习算法,它
- 一个深度强化学习航路规划(路径规划)github项目
iπ弟弟
强化学习轨迹规划深度学习
Github地址:https://github.com/ZYunfeii/UAV_Obstacle_Avoiding_DRL对应毕业设计论文:https://download.csdn.net/download/weixin_43145941/89025980READMEThisisaprojectaboutdeepreinforcementlearningautonomousobstacleav
- 深度强化学习在机器人控制中的应用与优化
书香浓
机器人
```html深度强化学习在机器人控制中的应用与优化深度强化学习在机器人控制中的应用与优化随着人工智能技术的快速发展,深度强化学习(DeepReinforcementLearning,DRL)逐渐成为机器人控制领域的热门研究方向。DRL结合了深度学习和强化学习的优点,通过神经网络处理高维感知数据,并利用强化学习算法实现智能决策,使得机器人能够在复杂环境中自主完成任务。深度强化学习的基本原理深度强化
- 深度对比:DeepSeek与ChatGPT的技术差异与范式演进
张家铭02
人工智能chatgpt人工智能deepseek
一、架构设计的哲学分野符号系统与神经网络的融合度DeepSeek采用混合架构,其核心创新在于将符号逻辑系统与深度强化学习框架耦合。具体而言,其决策模块可分解为:M(x)=σ(RL(x)⊕Symbolic_Reasoning(x))M(x)=σ(RL(x)⊕Symbolic_Reasoning(x))其中⊕⊕表示张量拼接操作,σσ为门控激活函数。这种设计使得系统在解决数学证明类任务时,能同时利用神经
- 深度强化学习实战:探索与行动的交响曲
宗津易Philip
深度强化学习实战:探索与行动的交响曲DeepReinforcementLearningInActionCodefromtheDeepReinforcementLearninginActionbookfromManning,Inc项目地址:https://gitcode.com/gh_mirrors/de/DeepReinforcementLearningInAction在人工智能的浩瀚宇宙中,深度
- 深度强化学习(DRL)实战:从AlphaGo到自动驾驶
layneyao
ai自动驾驶人工智能机器学习
——从算法原理到产业落地的全链路解析摘要本文通过算法对比矩阵、训练流程图解、Python代码实战及产业应用解析,构建从理论创新到工程落地的完整技术栈。实验数据显示:采用PPO算法训练的7自由度机械臂抓取成功率达92%,基于改进型DQN的自动驾驶决策模型在CARLA仿真环境中事故率降低67%。开发者可通过本文掌握:主流DRL算法特性对比与选型决策树安全约束强化学习(SafeRL)的工程实现从仿真到部
- TOMCAT在POST方法提交参数丢失问题
357029540
javatomcatjsp
摘自http://my.oschina.net/luckyi/blog/213209
昨天在解决一个BUG时发现一个奇怪的问题,一个AJAX提交数据在之前都是木有问题的,突然提交出错影响其他处理流程。
检查时发现页面处理数据较多,起初以为是提交顺序不正确修改后发现不是由此问题引起。于是删除掉一部分数据进行提交,较少数据能够提交成功。
恢复较多数据后跟踪提交FORM DATA ,发现数
- 在MyEclipse中增加JSP模板 删除-2008-08-18
ljy325
jspxmlMyEclipse
在D:\Program Files\MyEclipse 6.0\myeclipse\eclipse\plugins\com.genuitec.eclipse.wizards_6.0.1.zmyeclipse601200710\templates\jsp 目录下找到Jsp.vtl,复制一份,重命名为jsp2.vtl,然后把里面的内容修改为自己想要的格式,保存。
然后在 D:\Progr
- JavaScript常用验证脚本总结
eksliang
JavaScriptjavaScript表单验证
转载请出自出处:http://eksliang.iteye.com/blog/2098985
下面这些验证脚本,是我在这几年开发中的总结,今天把他放出来,也算是一种分享吧,现在在我的项目中也在用!包括日期验证、比较,非空验证、身份证验证、数值验证、Email验证、电话验证等等...!
&nb
- 微软BI(4)
18289753290
微软BI SSIS
1)
Q:查看ssis里面某个控件输出的结果:
A MessageBox.Show(Dts.Variables["v_lastTimestamp"].Value.ToString());
这是我们在包里面定义的变量
2):在关联目的端表的时候如果是一对多的关系,一定要选择唯一的那个键作为关联字段。
3)
Q:ssis里面如果将多个数据源的数据插入目的端一
- 定时对大数据量的表进行分表对数据备份
酷的飞上天空
大数据量
工作中遇到数据库中一个表的数据量比较大,属于日志表。正常情况下是不会有查询操作的,但如果不进行分表数据太多,执行一条简单sql语句要等好几分钟。。
分表工具:linux的shell + mysql自身提供的管理命令
原理:使用一个和原表数据结构一样的表,替换原表。
linux shell内容如下:
=======================开始 
- 本质的描述与因材施教
永夜-极光
感想随笔
不管碰到什么事,我都下意识的想去探索本质,找寻一个最形象的描述方式。
我坚信,世界上对一件事物的描述和解释,肯定有一种最形象,最贴近本质,最容易让人理解
&
- 很迷茫。。。
随便小屋
随笔
小弟我今年研一,也是从事的咱们现在最流行的专业(计算机)。本科三流学校,为了能有个更好的跳板,进入了考研大军,非常有幸能进入研究生的行业(具体学校就不说了,怕把学校的名誉给损了)。
先说一下自身的条件,本科专业软件工程。主要学习就是软件开发,几乎和计算机没有什么区别。因为学校本身三流,也就是让老师带着学生学点东西,然后让学生毕业就行了。对专业性的东西了解的非常浅。就那学的语言来说
- 23种设计模式的意图和适用范围
aijuans
设计模式
Factory Method 意图 定义一个用于创建对象的接口,让子类决定实例化哪一个类。Factory Method 使一个类的实例化延迟到其子类。 适用性 当一个类不知道它所必须创建的对象的类的时候。 当一个类希望由它的子类来指定它所创建的对象的时候。 当类将创建对象的职责委托给多个帮助子类中的某一个,并且你希望将哪一个帮助子类是代理者这一信息局部化的时候。
Abstr
- Java中的synchronized和volatile
aoyouzi
javavolatilesynchronized
说到Java的线程同步问题肯定要说到两个关键字synchronized和volatile。说到这两个关键字,又要说道JVM的内存模型。JVM里内存分为main memory和working memory。 Main memory是所有线程共享的,working memory则是线程的工作内存,它保存有部分main memory变量的拷贝,对这些变量的更新直接发生在working memo
- js数组的操作和this关键字
百合不是茶
js数组操作this关键字
js数组的操作;
一:数组的创建:
1、数组的创建
var array = new Array(); //创建一个数组
var array = new Array([size]); //创建一个数组并指定长度,注意不是上限,是长度
var arrayObj = new Array([element0[, element1[, ...[, elementN]]]
- 别人的阿里面试感悟
bijian1013
面试分享工作感悟阿里面试
原文如下:http://greemranqq.iteye.com/blog/2007170
一直做企业系统,虽然也自己一直学习技术,但是感觉还是有所欠缺,准备花几个月的时间,把互联网的东西,以及一些基础更加的深入透析,结果这次比较意外,有点突然,下面分享一下感受吧!
&nb
- 淘宝的测试框架Itest
Bill_chen
springmaven框架单元测试JUnit
Itest测试框架是TaoBao测试部门开发的一套单元测试框架,以Junit4为核心,
集合DbUnit、Unitils等主流测试框架,应该算是比较好用的了。
近期项目中用了下,有关itest的具体使用如下:
1.在Maven中引入itest框架:
<dependency>
<groupId>com.taobao.test</groupId&g
- 【Java多线程二】多路条件解决生产者消费者问题
bit1129
java多线程
package com.tom;
import java.util.LinkedList;
import java.util.Queue;
import java.util.concurrent.ThreadLocalRandom;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.loc
- 汉字转拼音pinyin4j
白糖_
pinyin4j
以前在项目中遇到汉字转拼音的情况,于是在网上找到了pinyin4j这个工具包,非常有用,别的不说了,直接下代码:
import java.util.HashSet;
import java.util.Set;
import net.sourceforge.pinyin4j.PinyinHelper;
import net.sourceforge.pinyin
- org.hibernate.TransactionException: JDBC begin failed解决方案
bozch
ssh数据库异常DBCP
org.hibernate.TransactionException: JDBC begin failed: at org.hibernate.transaction.JDBCTransaction.begin(JDBCTransaction.java:68) at org.hibernate.impl.SessionImp
- java-并查集(Disjoint-set)-将多个集合合并成没有交集的集合
bylijinnan
java
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.ut
- Java PrintWriter打印乱码
chenbowen00
java
一个小程序读写文件,发现PrintWriter输出后文件存在乱码,解决办法主要统一输入输出流编码格式。
读文件:
BufferedReader
从字符输入流中读取文本,缓冲各个字符,从而提供字符、数组和行的高效读取。
可以指定缓冲区的大小,或者可使用默认的大小。大多数情况下,默认值就足够大了。
通常,Reader 所作的每个读取请求都会导致对基础字符或字节流进行相应的读取请求。因
- [天气与气候]极端气候环境
comsci
环境
如果空间环境出现异变...外星文明并未出现,而只是用某种气象武器对地球的气候系统进行攻击,并挑唆地球国家间的战争,经过一段时间的准备...最大限度的削弱地球文明的整体力量,然后再进行入侵......
那么地球上的国家应该做什么样的防备工作呢?
&n
- oracle order by与union一起使用的用法
daizj
UNIONoracleorder by
当使用union操作时,排序语句必须放在最后面才正确,如下:
只能在union的最后一个子查询中使用order by,而这个order by是针对整个unioning后的结果集的。So:
如果unoin的几个子查询列名不同,如
Sql代码
select supplier_id, supplier_name
from suppliers
UNI
- zeus持久层读写分离单元测试
deng520159
单元测试
本文是zeus读写分离单元测试,距离分库分表,只有一步了.上代码:
1.ZeusMasterSlaveTest.java
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Assert;
import org.j
- Yii 截取字符串(UTF-8) 使用组件
dcj3sjt126com
yii
1.将Helper.php放进protected\components文件夹下。
2.调用方法:
Helper::truncate_utf8_string($content,20,false); //不显示省略号 Helper::truncate_utf8_string($content,20); //显示省略号
&n
- 安装memcache及php扩展
dcj3sjt126com
PHP
安装memcache tar zxvf memcache-2.2.5.tgz cd memcache-2.2.5/ /usr/local/php/bin/phpize (?) ./configure --with-php-confi
- JsonObject 处理日期
feifeilinlin521
javajsonJsonOjbectJsonArrayJSONException
写这边文章的初衷就是遇到了json在转换日期格式出现了异常 net.sf.json.JSONException: java.lang.reflect.InvocationTargetException 原因是当你用Map接收数据库返回了java.sql.Date 日期的数据进行json转换出的问题话不多说 直接上代码
&n
- Ehcache(06)——监听器
234390216
监听器listenerehcache
监听器
Ehcache中监听器有两种,监听CacheManager的CacheManagerEventListener和监听Cache的CacheEventListener。在Ehcache中,Listener是通过对应的监听器工厂来生产和发生作用的。下面我们将来介绍一下这两种类型的监听器。
- activiti 自带设计器中chrome 34版本不能打开bug的解决
jackyrong
Activiti
在acitivti modeler中,如果是chrome 34,则不能打开该设计器,其他浏览器可以,
经证实为bug,参考
http://forums.activiti.org/content/activiti-modeler-doesnt-work-chrome-v34
修改为,找到
oryx.debug.js
在最头部增加
if (!Document.
- 微信收货地址共享接口-终极解决
laotu5i0
微信开发
最近要接入微信的收货地址共享接口,总是不成功,折腾了好几天,实在没办法网上搜到的帖子也是骂声一片。我把我碰到并解决问题的过程分享出来,希望能给微信的接口文档起到一个辅助作用,让后面进来的开发者能快速的接入,而不需要像我们一样苦逼的浪费好几天,甚至一周的青春。各种羞辱、谩骂的话就不说了,本人还算文明。
如果你能搜到本贴,说明你已经碰到了各种 ed
- 关于人才
netkiller.github.com
工作面试招聘netkiller人才
关于人才
每个月我都会接到许多猎头的电话,有些猎头比较专业,但绝大多数在我看来与猎头二字还是有很大差距的。 与猎头接触多了,自然也了解了他们的工作,包括操作手法,总体上国内的猎头行业还处在初级阶段。
总结就是“盲目推荐,以量取胜”。
目前现状
许多从事人力资源工作的人,根本不懂得怎么找人才。处在人才找不到企业,企业找不到人才的尴尬处境。
企业招聘,通常是需要用人的部门提出招聘条件,由人
- 搭建 CentOS 6 服务器 - 目录
rensanning
centos
(1) 安装CentOS
ISO(desktop/minimal)、Cloud(AWS/阿里云)、Virtualization(VMWare、VirtualBox)
详细内容
(2) Linux常用命令
cd、ls、rm、chmod......
详细内容
(3) 初始环境设置
用户管理、网络设置、安全设置......
详细内容
(4) 常驻服务Daemon
- 【求助】mongoDB无法更新主键
toknowme
mongodb
Query query = new Query(); query.addCriteria(new Criteria("_id").is(o.getId())); &n
- jquery 页面滚动到底部自动加载插件集合
xp9802
jquery
很多社交网站都使用无限滚动的翻页技术来提高用户体验,当你页面滑到列表底部时候无需点击就自动加载更多的内容。下面为你推荐 10 个 jQuery 的无限滚动的插件:
1. jQuery ScrollPagination
jQuery ScrollPagination plugin 是一个 jQuery 实现的支持无限滚动加载数据的插件。
2. jQuery Screw
S