WKB近似

  • WKB方法用于研究一种特定类型的微分方程的全局性质
    • 很有用
    • 这种特定的微分方程形如:

y''+[\lambda^2q_1(x)+q_2(x)]y=0

  • 经过一些不是特别复杂的推导,我们可以得到他的WKB近似解。
    • 该近似解的选择取决于函数q_1(x)和参数\lambda的性质
    • 同时,我们默认函数的定义域为[0,+\infty)
  • q_1(x)恒大于零,\lambda\rightarrow +\infty时:

y=\frac{1}{q_1^{\frac{1}{4}}(x)}\begin{pmatrix} a\cdot cos(\lambda \int_0^x\sqrt{q_1(\tau)}d\tau)+b\cdot sin(\lambda\int_0^x\sqrt{q_1(\tau)}d\tau) \end{pmatrix}

  • q_1(x)恒小于零,\lambda\rightarrow +\infty时:

y=\frac{1}{[-q_1(x)]^{\frac{1}{4}}} \begin{pmatrix} a\cdot ch(\lambda \int_0^x\sqrt{-q_1(\tau)}d\tau)+b\cdot sh(\lambda\int_0^x\sqrt{-q_1(\tau)}d\tau) \end{pmatrix}

  • 注:很快你会发现两个问题
    • a 和 b 是怎么确定的
      • 答:初始条件
    • \lambda 趋于正无穷 并不意味着 只有 \lambda 很大才能使得该WKB 近似真实
  • q_1(x)存在一个或者多个零点时,函数的WKB近似会变得非常的复杂
    • 我们一会再看

WKB 近似案例 1

  • 该案例选取自参考文献【1】P137 例5.1.1

\begin{matrix} y''=\lambda^2Q(x)y\\ y(0)=0,y'(0)=1\\ Q(x)=(1+x^2)^2 \end{matrix}

  • 我们相信它的WKB近似为y\sim \frac{1}{\lambda (1+x^2)^{\frac{1}{2}}}sh(\lambda\cdot(x+\frac{x^3}{3}))
  • 我们使用四阶Runge-Kutta方法求解
import matplotlib.pyplot as plt
import numpy as np
from scipy.optimize import fsolve
 
class odessolver():
    def __init__(self, f, Y_start=np.array([0, 1]), dY_start=np.array([0, 0]), \
                 X_start=0, X_end=1, h=0.01):
 
        self.f = f
        self.h = h
        self.X = np.arange(X_start, X_end, self.h)
        self.n = Y_start.size
        self.Y = np.zeros((self.n, self.X.size))
        #第一个参数表示元 第二个参数表示变量
        self.Y[:, 0] = Y_start
        self.Y[:, 1] = Y_start + self.h * dY_start
        self.tol = 1e-6
        
    def __str__(self):
        return f"y'(x) = f(x) = ({self.f}) variables"
 
    def RK4(self):
        for i in range(1, self.X.size):
            k1 = self.f(self.X[i-1]           , self.Y[:, i-1])
            k2 = self.f(self.X[i-1] +self.h/2 , self.Y[:, i-1]+1/2*self.h*k1)
            k3 = self.f(self.X[i-1] +self.h/2 , self.Y[:, i-1]+1/2*self.h*k2)
            k4 = self.f(self.X[i-1] +self.h   , self.Y[:, i-1]+    self.h*k3)
            self.Y[:, i] = self.Y[:, i-1] +self.h/6 * (k1 + 2*k2 + 2*k3 + k4)
        return self.Y
  
    def IRK4(self):
            
        for i in range(1, self.X.size):
            def f1(k1, k2):
                f1_x = self.X[i-1] + self.h*(3-3**0.5)/6
                f1_y = self.Y[:, i-1]+k1/4*self.h+(3-2*3**0.5)/12*k2*self.h
                f1_res = self.f(f1_x, f1_y)
                return np.array([f1_res[i] for i in range(self.n)])
 
            def f2(k1, k2):
                f2_x = self.X[i-1] + self.h*(3+3**0.5)/6
                f2_y = self.Y[:, i-1]+k2/4*self.h+(3+2*3**0.5)/12*k1*self.h
                f2_res = self.f(f2_x, f2_y)
                return np.array([f2_res[i] for i in range(self.n)])              
                
            def func(k):
                k1 = np.array([k[i] for i in range(self.n)])
                k2 = np.array([k[i+self.n] for i in range(self.n)])
                
                doc = []
                for i in range(self.n):
                    doc.append((k1 - f1(k1, k2))[i])
                for i in range(self.n):
                    doc.append((k2 - f2(k1, k2))[i])
                return doc
            
            sol = fsolve(func, np.zeros(self.n*2))
            self.Y[:, i] = self.Y[:, i-1] + 1/2 * self.h * (sol[:self.n] + sol[self.n:])
        return self.Y
 

A = 0 
B = 1
Lambda = 1
Q = lambda x:(1+x**2)**2
Y0 = np.array([A, B])

def test_fun(x, Y):   
    return np.array([Y[1], Lambda**2 * Q(x) * Y[0]])
 
c = odessolver(test_fun, Y_start=Y0)
x = np.arange(0, 1, 0.01)


y3 = c.RK4()
x = np.arange(0, 1, 0.01)
plt.plot(x, y3[0, :], label="RK4")
 
##y4 = c.IRK4()
##x = np.arange(0, 1, 0.01)
##plt.plot(x, y4[0, :], label="IRK4")

WKB = lambda x:1/(Lambda*(1+x**2)**0.5)*(np.exp(x+x**3/3)-np.exp(-(x+x**3/3)))/2
plt.plot(x, WKB(x), label="WKB")

plt.legend()
plt.pause(0.01)

WKB近似_第1张图片

  • 看上去十分得合理

参考文献

[1]数学物理中的渐近方法 李家春 周显初 科学出版社

你可能感兴趣的:(算法)