1.问题描述:在MapReduce中,想要输出最频繁出现的前k个单词。
问题输入:<单词,它出现的频率>
想要的输出:出现最多的前100个单词
例如,输入是:
hello 3
word 4
a 4
moring 5
goog 10
bye 5
(注意:中间的分割符是'\t')
想要得到出现频率最多的前3个单词,则期望得到的结果为:
goog 10
moring 5
bye 5
2.解决方案
可以用一个map和一个reduce解决,map负责按频率降序输出键值对,把所有mapper的结果都输出到一个reduer中,reduce负责输出前3个出现频率最高的单词(这里输出是在reducer的cleanup()函数中输出)
详情 参见http://www.cnblogs.com/hengli/archive/2012/12/04/2801619.html
3.程序代码
(1)
package sort; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.input.TextInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.util.GenericOptionsParser; import org.apache.hadoop.io.*; public class wordSort { public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException { Configuration conf = new Configuration(); String[] otherArgs = new GenericOptionsParser(conf,args).getRemainingArgs(); if(otherArgs.length != 2) { System.err.println("Usage: wordsort <in> <out>"); System.exit(2); } Job job2 = new Job(conf,"word sort"); job2.setJarByClass(wordSort.class); job2.setMapperClass(SortMapper.class); job2.setReducerClass(SortReducer.class); job2.setMapOutputKeyClass(DesIntWritable.class); job2.setMapOutputValueClass(Text.class); //job2.setOutputKeyClass(Text.class); //job2.setOutputValueClass(DesIntWritable.class); job2.setNumReduceTasks(1); //set the number of reducer = 1 job2.setOutputKeyClass(NullWritable.class); job2.setOutputValueClass(Text.class); FileInputFormat.addInputPath(job2, new Path(otherArgs[0])); FileOutputFormat.setOutputPath(job2, new Path(otherArgs[1])); System.out.println("job2 start....."); job2.waitForCompletion(true); System.out.println("job2 done."); } }
(2)SortMapper类
package sort; import java.io.IOException; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.io.Writable; import org.apache.hadoop.io.WritableComparable; import org.apache.hadoop.mapred.OutputCollector; import org.apache.hadoop.mapred.Reporter; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Mapper.Context; /** * 按键值降序输出 * @author hx * */ public class SortMapper extends Mapper<LongWritable,Text,DesIntWritable,Text> { private DesIntWritable result = new DesIntWritable(); private Text word = new Text(); public void map(LongWritable key,Text value,Context context) throws IOException, InterruptedException { String[] temp = value.toString().split("\t"); if(temp != null && temp.length == 2) { result.set(Integer.parseInt(temp[1])); word.set(temp[0]); context.write(result, word); } } }
(3)SortReducer类
package sort;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.TreeMap;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.Reducer.Context;
/**
* 输出排在前3个到单词及其频数
* @author hx
*
*/
public class SortReducer extends Reducer<DesIntWritable, Text, NullWritable, Text> {
public static final int k = 3;
public List<Text> words = new ArrayList<Text>();
public void reduce(DesIntWritable key,Iterable<Text> values,Context context) throws IOException, InterruptedException
{
for(Text val:values)
{
Text result = new Text();
result.set(key + "\t" + val.toString());
if(words.size() <= k-1)
words.add(result);
}
}
@Override
protected void cleanup(Context context) throws IOException, InterruptedException
{
for(Text text :words)
{
context.write(NullWritable.get(), text);
}
}
}
(4)DesIntWritable类
package sort; import java.io.*; import org.apache.hadoop.io.WritableComparable; import org.apache.hadoop.io.WritableComparator; /** A WritableComparable for ints. */ public class DesIntWritable implements WritableComparable { private int value; public DesIntWritable() {} public DesIntWritable(int value) { set(value); } /** Set the value of this DesIntWritable. */ public void set(int value) { this.value = value; } /** Return the value of this DesIntWritable. */ public int get() { return value; } public void readFields(DataInput in) throws IOException { value = in.readInt(); } public void write(DataOutput out) throws IOException { out.writeInt(value); } /** Returns true iff <code>o</code> is a DesIntWritable with the same value. */ public boolean equals(Object o) { if (!(o instanceof DesIntWritable)) return false; DesIntWritable other = (DesIntWritable)o; return this.value == other.value; } public int hashCode() { return value; } /** Compares two DesIntWritables. */ public int compareTo(Object o) { int thisValue = this.value; int thatValue = ((DesIntWritable)o).value; return (thisValue<thatValue ? -1 : (thisValue==thatValue ? 0 : 1)); } public String toString() { return Integer.toString(value); } /** A Comparator optimized for DesIntWritable. */ public static class Comparator extends WritableComparator { public Comparator() { super(DesIntWritable.class); } public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2) { int thisValue = readInt(b1, s1); int thatValue = readInt(b2, s2); return (thisValue>thatValue ? -1 : (thisValue==thatValue ? 0 : 1)); } } static { // register this comparator WritableComparator.define(DesIntWritable.class, new Comparator()); } }
参考:
[1] http://www.greenplum.com/blog/topics/hadoop/how-hadoop-mapreduce-can-transform-how-you-build-top-ten-lists
[2] http://www.cnblogs.com/hengli/archive/2012/12/04/2801619.html