本文是我的学习笔记,基于人工智能领域大佬Bubbliiiing聪明的人脸识别4——Pytorch 利用Retinaface+Facenet搭建人脸识别平台
原文链接:https://blog.csdn.net/weixin_44791964/article/details/111130326
本文将详细介绍这个人脸检测与识别系统的功能实现。该系统使用深度学习模型,能够对图片、视频甚至实时摄像头流进行人脸检测、识别与采集。它既实现了强大的人脸分析后端算法,也开发了方便用户使用的网页交互界面。
github:
Face-recognition-web-ui
我的相关笔记:
Retinaface实现人脸检测与关键点定位-深度学习学习笔记-1
Facenet实现人脸特征比对-深度学习学习笔记-2
RetinaFace人脸检测模型-Gradio界面设计
FaceNet人脸识别模型-Gradio界面设计
Retinaface+FaceNet人脸识别系统-Gradio界面设计
这段代码实现了一个基于Retinaface和Facenet的人脸检测和识别系统。下面对代码进行详细解释:
nets.facenet:Facenet模型的定义。
nets_retinaface.retinaface:Retinaface模型的定义。
utils.anchors:生成Retinaface模型所需的先验框。
utils.config:配置文件,包含Retinaface和Facenet的参数设置。
utils.utils:一些辅助函数,如对图像进行预处理、计算特征向量等。
utils.utils_bbox:一些辅助函数,用于解码检测结果、非极大值抑制等。
定义函数cv2ImgAddText:该函数用于在图像上添加中文文字。它将输入的图像转换为PIL格式,然后使用指定的字体和颜色,在图像上绘制文字,并返回绘制完成的图像。
定义类Retinaface:该类封装了人脸检测和人脸识别的相关方法和参数。
__init__方法:初始化Retinaface模型和Facenet模型,并加载权重文件。根据传入的参数设置各项配置。
encode_face_dataset方法:对输入的人脸图片进行编码,生成人脸特征向量,并保存到文件中。遍历所有输入的人脸图片,首先使用Retinaface网络检测人脸框,然后利用Facenet网络对每个人脸框进行编码得到128维的特征向量。最后将特征向量保存到文件中。
detect_image方法:对输入的图像进行人脸检测和人脸识别,并返回标注了人脸框和姓名的图像。首先使用Retinaface网络检测人脸框,然后利用Facenet网络对每个人脸框进行编码得到128维的特征向量。接着将特征向量与已知人脸特征向量进行比对,找出最相似的人脸,并返回其姓名。最后在图像上绘制人脸框和姓名。
live_detect_image方法:与detect_image方法类似,但可以根据flag参数判断是否需要进行人脸识别。如果flag为0,则直接将人脸标记为"False",表示未识别成功。
总的来说,这段代码使用Retinaface网络进行人脸检测,然后利用Facenet网络对检测到的人脸进行编码和比对,从而实现人脸识别的功能。它可以对单张图片进行处理,也可以实时处理视频流,并且提供了计算帧率的功能。
import time
import cv2
import numpy as np
import torch
import torch.nn as nn
from PIL import Image, ImageDraw, ImageFont
from tqdm import tqdm
from nets.facenet import Facenet
from nets_retinaface.retinaface import RetinaFace
from utils.anchors import Anchors
from utils.config import cfg_mnet, cfg_re50
from utils.utils import (Alignment_1, compare_faces, letterbox_image,
preprocess_input)
from utils.utils_bbox import (decode, decode_landm, non_max_suppression,
retinaface_correct_boxes)
# --------------------------------------#
# 写中文需要转成PIL来写。
# --------------------------------------#
def cv2ImgAddText(img, label, left, top, textColor=(255, 255, 255)):
img = Image.fromarray(np.uint8(img))
# ---------------#
# 设置字体
# ---------------#
font = ImageFont.truetype(font='model_data/simhei.ttf', size=20)
draw = ImageDraw.Draw(img)
label = label.encode('utf-8')
draw.text((left, top), str(label, 'UTF-8'), fill=textColor, font=font)
return np.asarray(img)
# --------------------------------------#
# 一定注意backbone和model_path的对应。
# 在更换facenet_model后,
# 一定要注意重新编码人脸。
# --------------------------------------#
class Retinaface(object):
_defaults = {
# ----------------------------------------------------------------------#
# retinaface训练完的权值路径
# ----------------------------------------------------------------------#
"retinaface_model_path": 'model_data/Retinaface_mobilenet0.25.pth',
# ----------------------------------------------------------------------#
# retinaface所使用的主干网络,有mobilenet和resnet50
# ----------------------------------------------------------------------#
"retinaface_backbone": "mobilenet",
# ----------------------------------------------------------------------#
# retinaface中只有得分大于置信度的预测框会被保留下来
# ----------------------------------------------------------------------#
"confidence": 0.5,
# ----------------------------------------------------------------------#
# retinaface中非极大抑制所用到的nms_iou大小
# ----------------------------------------------------------------------#
"nms_iou": 0.3,
# ----------------------------------------------------------------------#
# 是否需要进行图像大小限制。
# 输入图像大小会大幅度地影响FPS,想加快检测速度可以减少input_shape。
# 开启后,会将输入图像的大小限制为input_shape。否则使用原图进行预测。
# 会导致检测结果偏差,主干为resnet50不存在此问题。
# 可根据输入图像的大小自行调整input_shape,注意为32的倍数,如[640, 640, 3]
# ----------------------------------------------------------------------#
"retinaface_input_shape": [640, 640, 3],
# ----------------------------------------------------------------------#
# 是否需要进行图像大小限制。
# ----------------------------------------------------------------------#
"letterbox_image": True,
# ----------------------------------------------------------------------#
# facenet训练完的权值路径
# ----------------------------------------------------------------------#
"facenet_model_path": 'model_data/facenet_mobilenet.pth',
# ----------------------------------------------------------------------#
# facenet所使用的主干网络, mobilenet和inception_resnetv1
# ----------------------------------------------------------------------#
"facenet_backbone": "mobilenet",
# ----------------------------------------------------------------------#
# facenet所使用到的输入图片大小
# ----------------------------------------------------------------------#
"facenet_input_shape": [160, 160, 3],
# ----------------------------------------------------------------------#
# facenet所使用的人脸距离门限
# ----------------------------------------------------------------------#
"facenet_threhold": 0.9,
# --------------------------------#
# 是否使用Cuda
# 没有GPU可以设置成False
# --------------------------------#
"cuda": True
}
@classmethod
def get_defaults(cls, n):
if n in cls._defaults:
return cls._defaults[n]
else:
return "Unrecognized attribute name '" + n + "'"
# ---------------------------------------------------#
# 初始化Retinaface
# ---------------------------------------------------#
def __init__(self, encoding=0, **kwargs):
self.__dict__.update(self._defaults)
for name, value in kwargs.items():
setattr(self, name, value)
# ---------------------------------------------------#
# 不同主干网络的config信息
# ---------------------------------------------------#
if self.retinaface_backbone == "mobilenet":
self.cfg = cfg_mnet
else:
self.cfg = cfg_re50
# ---------------------------------------------------#
# 先验框的生成
# ---------------------------------------------------#
self.anchors = Anchors(self.cfg, image_size=(
self.retinaface_input_shape[0], self.retinaface_input_shape[1])).get_anchors()
self.generate()
try:
self.known_face_encodings = np.load(
"model_data/{backbone}_face_encoding.npy".format(backbone=self.facenet_backbone))
self.known_face_names = np.load("model_data/{backbone}_names.npy".format(backbone=self.facenet_backbone))
except:
if not encoding:
print("载入已有人脸特征失败,请检查model_data下面是否生成了相关的人脸特征文件。")
pass
# ---------------------------------------------------#
# 获得所有的分类
# ---------------------------------------------------#
def generate(self):
# -------------------------------#
# 载入模型与权值
# -------------------------------#
self.net = RetinaFace(cfg=self.cfg, phase='eval', pre_train=False).eval()
self.facenet = Facenet(backbone=self.facenet_backbone, mode="predict").eval()
print('Loading weights into state dict...')
state_dict = torch.load(self.retinaface_model_path)
self.net.load_state_dict(state_dict)
state_dict = torch.load(self.facenet_model_path)
self.facenet.load_state_dict(state_dict, strict=False)
if self.cuda:
self.net = nn.DataParallel(self.net)
self.net = self.net.cuda()
self.facenet = nn.DataParallel(self.facenet)
self.facenet = self.facenet.cuda()
print('Finished!')
def encode_face_dataset(self, image_paths, names):
face_encodings = []
for index, path in enumerate(tqdm(image_paths)):
# ---------------------------------------------------#
# 打开人脸图片
# ---------------------------------------------------#
image = np.array(Image.open(path), np.float32)
# ---------------------------------------------------#
# 对输入图像进行一个备份
# ---------------------------------------------------#
old_image = image.copy()
# ---------------------------------------------------#
# 计算输入图片的高和宽
# ---------------------------------------------------#
im_height, im_width, _ = np.shape(image)
# ---------------------------------------------------#
# 计算scale,用于将获得的预测框转换成原图的高宽
# ---------------------------------------------------#
scale = [
np.shape(image)[1], np.shape(image)[0], np.shape(image)[1], np.shape(image)[0]
]
scale_for_landmarks = [
np.shape(image)[1], np.shape(image)[0], np.shape(image)[1], np.shape(image)[0],
np.shape(image)[1], np.shape(image)[0], np.shape(image)[1], np.shape(image)[0],
np.shape(image)[1], np.shape(image)[0]
]
if self.letterbox_image:
image = letterbox_image(image, [self.retinaface_input_shape[1], self.retinaface_input_shape[0]])
anchors = self.anchors
else:
anchors = Anchors(self.cfg, image_size=(im_height, im_width)).get_anchors()
# ---------------------------------------------------#
# 将处理完的图片传入Retinaface网络当中进行预测
# ---------------------------------------------------#
with torch.no_grad():
# -----------------------------------------------------------#
# 图片预处理,归一化。
# -----------------------------------------------------------#
image = torch.from_numpy(preprocess_input(image).transpose(2, 0, 1)).unsqueeze(0).type(
torch.FloatTensor)
if self.cuda:
image = image.cuda()
anchors = anchors.cuda()
loc, conf, landms = self.net(image)
# -----------------------------------------------------------#
# 对预测框进行解码
# -----------------------------------------------------------#
boxes = decode(loc.data.squeeze(0), anchors, self.cfg['variance'])
# -----------------------------------------------------------#
# 获得预测结果的置信度
# -----------------------------------------------------------#
conf = conf.data.squeeze(0)[:, 1:2]
# -----------------------------------------------------------#
# 对人脸关键点进行解码
# -----------------------------------------------------------#
landms = decode_landm(landms.data.squeeze(0), anchors, self.cfg['variance'])
# -----------------------------------------------------------#
# 对人脸检测结果进行堆叠
# -----------------------------------------------------------#
boxes_conf_landms = torch.cat([boxes, conf, landms], -1)
boxes_conf_landms = non_max_suppression(boxes_conf_landms, self.confidence)
if len(boxes_conf_landms) <= 0:
print(names[index], ":未检测到人脸")
continue
# ---------------------------------------------------------#
# 如果使用了letterbox_image的话,要把灰条的部分去除掉。
# ---------------------------------------------------------#
if self.letterbox_image:
boxes_conf_landms = retinaface_correct_boxes(boxes_conf_landms, \
np.array([self.retinaface_input_shape[0],
self.retinaface_input_shape[1]]),
np.array([im_height, im_width]))
boxes_conf_landms[:, :4] = boxes_conf_landms[:, :4] * scale
boxes_conf_landms[:, 5:] = boxes_conf_landms[:, 5:] * scale_for_landmarks
# ---------------------------------------------------#
# 选取最大的人脸框。
# ---------------------------------------------------#
best_face_location = None
biggest_area = 0
for result in boxes_conf_landms:
left, top, right, bottom = result[0:4]
w = right - left
h = bottom - top
if w * h > biggest_area:
biggest_area = w * h
best_face_location = result
# ---------------------------------------------------#
# 截取图像
# ---------------------------------------------------#
crop_img = old_image[int(best_face_location[1]):int(best_face_location[3]),
int(best_face_location[0]):int(best_face_location[2])]
landmark = np.reshape(best_face_location[5:], (5, 2)) - np.array(
[int(best_face_location[0]), int(best_face_location[1])])
crop_img, _ = Alignment_1(crop_img, landmark)
crop_img = np.array(
letterbox_image(np.uint8(crop_img), (self.facenet_input_shape[1], self.facenet_input_shape[0]))) / 255
crop_img = crop_img.transpose(2, 0, 1)
crop_img = np.expand_dims(crop_img, 0)
# ---------------------------------------------------#
# 利用图像算取长度为128的特征向量
# ---------------------------------------------------#
with torch.no_grad():
crop_img = torch.from_numpy(crop_img).type(torch.FloatTensor)
if self.cuda:
crop_img = crop_img.cuda()
face_encoding = self.facenet(crop_img)[0].cpu().numpy()
face_encodings.append(face_encoding)
np.save("model_data/{backbone}_face_encoding.npy".format(backbone=self.facenet_backbone), face_encodings)
np.save("model_data/{backbone}_names.npy".format(backbone=self.facenet_backbone), names)
# ---------------------------------------------------#
# 检测图片
# ---------------------------------------------------#
def detect_image(self, image):
# ---------------------------------------------------#
# 对输入图像进行一个备份,后面用于绘图
# ---------------------------------------------------#
old_image = image.copy()
# ---------------------------------------------------#
# 把图像转换成numpy的形式
# ---------------------------------------------------#
image = np.array(image, np.float32)
# ---------------------------------------------------#
# Retinaface检测部分-开始
# ---------------------------------------------------#
# ---------------------------------------------------#
# 计算输入图片的高和宽
# ---------------------------------------------------#
im_height, im_width, _ = np.shape(image)
# ---------------------------------------------------#
# 计算scale,用于将获得的预测框转换成原图的高宽
# ---------------------------------------------------#
scale = [
np.shape(image)[1], np.shape(image)[0], np.shape(image)[1], np.shape(image)[0]
]
scale_for_landmarks = [
np.shape(image)[1], np.shape(image)[0], np.shape(image)[1], np.shape(image)[0],
np.shape(image)[1], np.shape(image)[0], np.shape(image)[1], np.shape(image)[0],
np.shape(image)[1], np.shape(image)[0]
]
# ---------------------------------------------------------#
# letterbox_image可以给图像增加灰条,实现不失真的resize
# ---------------------------------------------------------#
if self.letterbox_image:
image = letterbox_image(image, [self.retinaface_input_shape[1], self.retinaface_input_shape[0]])
anchors = self.anchors
else:
anchors = Anchors(self.cfg, image_size=(im_height, im_width)).get_anchors()
# ---------------------------------------------------#
# 将处理完的图片传入Retinaface网络当中进行预测
# ---------------------------------------------------#
with torch.no_grad():
# -----------------------------------------------------------#
# 图片预处理,归一化。
# -----------------------------------------------------------#
image = torch.from_numpy(preprocess_input(image).transpose(2, 0, 1)).unsqueeze(0).type(torch.FloatTensor)
if self.cuda:
anchors = anchors.cuda()
image = image.cuda()
# ---------------------------------------------------------#
# 传入网络进行预测
# ---------------------------------------------------------#
loc, conf, landms = self.net(image)
# ---------------------------------------------------#
# Retinaface网络的解码,最终我们会获得预测框
# 将预测结果进行解码和非极大抑制
# ---------------------------------------------------#
boxes = decode(loc.data.squeeze(0), anchors, self.cfg['variance'])
conf = conf.data.squeeze(0)[:, 1:2]
landms = decode_landm(landms.data.squeeze(0), anchors, self.cfg['variance'])
# -----------------------------------------------------------#
# 对人脸检测结果进行堆叠
# -----------------------------------------------------------#
boxes_conf_landms = torch.cat([boxes, conf, landms], -1)
boxes_conf_landms = non_max_suppression(boxes_conf_landms, self.confidence)
# ---------------------------------------------------#
# 如果没有预测框则返回原图
# ---------------------------------------------------#
if len(boxes_conf_landms) <= 0:
return old_image
# ---------------------------------------------------------#
# 如果使用了letterbox_image的话,要把灰条的部分去除掉。
# ---------------------------------------------------------#
if self.letterbox_image:
boxes_conf_landms = retinaface_correct_boxes(boxes_conf_landms, \
np.array([self.retinaface_input_shape[0],
self.retinaface_input_shape[1]]),
np.array([im_height, im_width]))
boxes_conf_landms[:, :4] = boxes_conf_landms[:, :4] * scale
boxes_conf_landms[:, 5:] = boxes_conf_landms[:, 5:] * scale_for_landmarks
# ---------------------------------------------------#
# Retinaface检测部分-结束
# ---------------------------------------------------#
# -----------------------------------------------#
# Facenet编码部分-开始
# -----------------------------------------------#
face_encodings = []
for boxes_conf_landm in boxes_conf_landms:
# ----------------------#
# 图像截取,人脸矫正
# ----------------------#
boxes_conf_landm = np.maximum(boxes_conf_landm, 0)
crop_img = np.array(old_image)[int(boxes_conf_landm[1]):int(boxes_conf_landm[3]),
int(boxes_conf_landm[0]):int(boxes_conf_landm[2])]
landmark = np.reshape(boxes_conf_landm[5:], (5, 2)) - np.array(
[int(boxes_conf_landm[0]), int(boxes_conf_landm[1])])
crop_img, _ = Alignment_1(crop_img, landmark)
# ----------------------#
# 人脸编码
# ----------------------#
crop_img = np.array(
letterbox_image(np.uint8(crop_img), (self.facenet_input_shape[1], self.facenet_input_shape[0]))) / 255
crop_img = np.expand_dims(crop_img.transpose(2, 0, 1), 0)
with torch.no_grad():
crop_img = torch.from_numpy(crop_img).type(torch.FloatTensor)
if self.cuda:
crop_img = crop_img.cuda()
# -----------------------------------------------#
# 利用facenet_model计算长度为128特征向量
# -----------------------------------------------#
face_encoding = self.facenet(crop_img)[0].cpu().numpy()
face_encodings.append(face_encoding)
# -----------------------------------------------#
# Facenet编码部分-结束
# -----------------------------------------------#
# -----------------------------------------------#
# 人脸特征比对-开始
# -----------------------------------------------#
face_names = []
for face_encoding in face_encodings:
# -----------------------------------------------------#
# 取出一张脸并与数据库中所有的人脸进行对比,计算得分
# -----------------------------------------------------#
matches, face_distances = compare_faces(self.known_face_encodings, face_encoding,
tolerance=self.facenet_threhold)
name = "Unknown"
# -----------------------------------------------------#
# 取出这个最近人脸的评分
# 取出当前输入进来的人脸,最接近的已知人脸的序号
# -----------------------------------------------------#
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
name = self.known_face_names[best_match_index]
face_names.append(name)
# -----------------------------------------------#
# 人脸特征比对-结束
# -----------------------------------------------#
global fname
for i, b in enumerate(boxes_conf_landms):
text = "{:.4f}".format(b[4])
b = list(map(int, b))
# ---------------------------------------------------#
# b[0]-b[3]为人脸框的坐标,b[4]为得分
# ---------------------------------------------------#
cv2.rectangle(old_image, (b[0], b[1]), (b[2], b[3]), (0, 0, 255), 2)
cx = b[0]
cy = b[1] + 12
cv2.putText(old_image, text, (cx, cy),
cv2.FONT_HERSHEY_DUPLEX, 0.5, (255, 255, 255))
# ---------------------------------------------------#
# b[5]-b[14]为人脸关键点的坐标
# ---------------------------------------------------#
cv2.circle(old_image, (b[5], b[6]), 1, (0, 0, 255), 4)
cv2.circle(old_image, (b[7], b[8]), 1, (0, 255, 255), 4)
cv2.circle(old_image, (b[9], b[10]), 1, (255, 0, 255), 4)
cv2.circle(old_image, (b[11], b[12]), 1, (0, 255, 0), 4)
cv2.circle(old_image, (b[13], b[14]), 1, (255, 0, 0), 4)
name = face_names[i]
# font = cv2.FONT_HERSHEY_SIMPLEX
# cv2.putText(old_image, name, (b[0] , b[3] - 15), font, 0.75, (255, 255, 255), 2)
# --------------------------------------------------------------#
# cv2不能写中文,加上这段可以,但是检测速度会有一定的下降。
# 如果不是必须,可以换成cv2只显示英文。
# --------------------------------------------------------------#
old_image = cv2ImgAddText(old_image, name, b[0] + 5, b[3] - 25)
return old_image
def live_detect_image(self, image, flag):
# ---------------------------------------------------#
# 对输入图像进行一个备份,后面用于绘图
# ---------------------------------------------------#
old_image = image.copy()
# ---------------------------------------------------#
# 把图像转换成numpy的形式
# ---------------------------------------------------#
image = np.array(image, np.float32)
# ---------------------------------------------------#
# Retinaface检测部分-开始
# ---------------------------------------------------#
# ---------------------------------------------------#
# 计算输入图片的高和宽
# ---------------------------------------------------#
im_height, im_width, _ = np.shape(image)
# ---------------------------------------------------#
# 计算scale,用于将获得的预测框转换成原图的高宽
# ---------------------------------------------------#
scale = [
np.shape(image)[1], np.shape(image)[0], np.shape(image)[1], np.shape(image)[0]
]
scale_for_landmarks = [
np.shape(image)[1], np.shape(image)[0], np.shape(image)[1], np.shape(image)[0],
np.shape(image)[1], np.shape(image)[0], np.shape(image)[1], np.shape(image)[0],
np.shape(image)[1], np.shape(image)[0]
]
# ---------------------------------------------------------#
# letterbox_image可以给图像增加灰条,实现不失真的resize
# ---------------------------------------------------------#
if self.letterbox_image:
image = letterbox_image(image, [self.retinaface_input_shape[1], self.retinaface_input_shape[0]])
anchors = self.anchors
else:
anchors = Anchors(self.cfg, image_size=(im_height, im_width)).get_anchors()
# ---------------------------------------------------#
# 将处理完的图片传入Retinaface网络当中进行预测
# ---------------------------------------------------#
with torch.no_grad():
# -----------------------------------------------------------#
# 图片预处理,归一化。
# -----------------------------------------------------------#
image = torch.from_numpy(preprocess_input(image).transpose(2, 0, 1)).unsqueeze(0).type(torch.FloatTensor)
if self.cuda:
anchors = anchors.cuda()
image = image.cuda()
# ---------------------------------------------------------#
# 传入网络进行预测
# ---------------------------------------------------------#
loc, conf, landms = self.net(image)
# ---------------------------------------------------#
# Retinaface网络的解码,最终我们会获得预测框
# 将预测结果进行解码和非极大抑制
# ---------------------------------------------------#
boxes = decode(loc.data.squeeze(0), anchors, self.cfg['variance'])
conf = conf.data.squeeze(0)[:, 1:2]
landms = decode_landm(landms.data.squeeze(0), anchors, self.cfg['variance'])
# -----------------------------------------------------------#
# 对人脸检测结果进行堆叠
# -----------------------------------------------------------#
boxes_conf_landms = torch.cat([boxes, conf, landms], -1)
boxes_conf_landms = non_max_suppression(boxes_conf_landms, self.confidence)
# ---------------------------------------------------#
# 如果没有预测框则返回原图
# ---------------------------------------------------#
if len(boxes_conf_landms) <= 0:
return old_image
# ---------------------------------------------------------#
# 如果使用了letterbox_image的话,要把灰条的部分去除掉。
# ---------------------------------------------------------#
if self.letterbox_image:
boxes_conf_landms = retinaface_correct_boxes(boxes_conf_landms, \
np.array([self.retinaface_input_shape[0],
self.retinaface_input_shape[1]]),
np.array([im_height, im_width]))
boxes_conf_landms[:, :4] = boxes_conf_landms[:, :4] * scale
boxes_conf_landms[:, 5:] = boxes_conf_landms[:, 5:] * scale_for_landmarks
# ---------------------------------------------------#
# Retinaface检测部分-结束
# ---------------------------------------------------#
# -----------------------------------------------#
# Facenet编码部分-开始
# -----------------------------------------------#
face_encodings = []
for boxes_conf_landm in boxes_conf_landms:
# ----------------------#
# 图像截取,人脸矫正
# ----------------------#
boxes_conf_landm = np.maximum(boxes_conf_landm, 0)
crop_img = np.array(old_image)[int(boxes_conf_landm[1]):int(boxes_conf_landm[3]),
int(boxes_conf_landm[0]):int(boxes_conf_landm[2])]
landmark = np.reshape(boxes_conf_landm[5:], (5, 2)) - np.array(
[int(boxes_conf_landm[0]), int(boxes_conf_landm[1])])
crop_img, _ = Alignment_1(crop_img, landmark)
# ----------------------#
# 人脸编码
# ----------------------#
crop_img = np.array(
letterbox_image(np.uint8(crop_img), (self.facenet_input_shape[1], self.facenet_input_shape[0]))) / 255
crop_img = np.expand_dims(crop_img.transpose(2, 0, 1), 0)
with torch.no_grad():
crop_img = torch.from_numpy(crop_img).type(torch.FloatTensor)
if self.cuda:
crop_img = crop_img.cuda()
# -----------------------------------------------#
# 利用facenet_model计算长度为128特征向量
# -----------------------------------------------#
face_encoding = self.facenet(crop_img)[0].cpu().numpy()
face_encodings.append(face_encoding)
# -----------------------------------------------#
# Facenet编码部分-结束
# -----------------------------------------------#
# -----------------------------------------------#
# 人脸特征比对-开始
# -----------------------------------------------#
face_names = []
for face_encoding in face_encodings:
# -----------------------------------------------------#
# 取出一张脸并与数据库中所有的人脸进行对比,计算得分
# -----------------------------------------------------#
matches, face_distances = compare_faces(self.known_face_encodings, face_encoding,
tolerance=self.facenet_threhold)
name = "Unknown"
# -----------------------------------------------------#
# 取出这个最近人脸的评分
# 取出当前输入进来的人脸,最接近的已知人脸的序号
# -----------------------------------------------------#
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
name = self.known_face_names[best_match_index]
if flag == 0:
name = "False"
face_names.append(name)
# -----------------------------------------------#
# 人脸特征比对-结束
# -----------------------------------------------#
for i, b in enumerate(boxes_conf_landms):
text = "{:.4f}".format(b[4])
b = list(map(int, b))
# ---------------------------------------------------#
# b[0]-b[3]为人脸框的坐标,b[4]为得分
# ---------------------------------------------------#
cv2.rectangle(old_image, (b[0], b[1]), (b[2], b[3]), (0, 0, 255), 2)
cx = b[0]
cy = b[1] + 12
cv2.putText(old_image, text, (cx, cy),
cv2.FONT_HERSHEY_DUPLEX, 0.5, (255, 255, 255))
# ---------------------------------------------------#
# b[5]-b[14]为人脸关键点的坐标
# ---------------------------------------------------#
cv2.circle(old_image, (b[5], b[6]), 1, (0, 0, 255), 4)
cv2.circle(old_image, (b[7], b[8]), 1, (0, 255, 255), 4)
cv2.circle(old_image, (b[9], b[10]), 1, (255, 0, 255), 4)
cv2.circle(old_image, (b[11], b[12]), 1, (0, 255, 0), 4)
cv2.circle(old_image, (b[13], b[14]), 1, (255, 0, 0), 4)
name = face_names[i]
# font = cv2.FONT_HERSHEY_SIMPLEX
# cv2.putText(old_image, name, (b[0] , b[3] - 15), font, 0.75, (255, 255, 255), 2)
# --------------------------------------------------------------#
# cv2不能写中文,加上这段可以,但是检测速度会有一定的下降。
# 如果不是必须,可以换成cv2只显示英文。
# --------------------------------------------------------------#
old_image = cv2ImgAddText(old_image, name, b[0] + 5, b[3] - 25)
return old_image
def get_FPS(self, image, test_interval):
# ---------------------------------------------------#
# 对输入图像进行一个备份,后面用于绘图
# ---------------------------------------------------#
old_image = image.copy()
# ---------------------------------------------------#
# 把图像转换成numpy的形式
# ---------------------------------------------------#
image = np.array(image, np.float32)
# ---------------------------------------------------#
# Retinaface检测部分-开始
# ---------------------------------------------------#
# ---------------------------------------------------#
# 计算输入图片的高和宽
# ---------------------------------------------------#
im_height, im_width, _ = np.shape(image)
# ---------------------------------------------------#
# 计算scale,用于将获得的预测框转换成原图的高宽
# ---------------------------------------------------#
scale = [
np.shape(image)[1], np.shape(image)[0], np.shape(image)[1], np.shape(image)[0]
]
scale_for_landmarks = [
np.shape(image)[1], np.shape(image)[0], np.shape(image)[1], np.shape(image)[0],
np.shape(image)[1], np.shape(image)[0], np.shape(image)[1], np.shape(image)[0],
np.shape(image)[1], np.shape(image)[0]
]
# ---------------------------------------------------------#
# letterbox_image可以给图像增加灰条,实现不失真的resize
# ---------------------------------------------------------#
if self.letterbox_image:
image = letterbox_image(image, [self.retinaface_input_shape[1], self.retinaface_input_shape[0]])
anchors = self.anchors
else:
anchors = Anchors(self.cfg, image_size=(im_height, im_width)).get_anchors()
# ---------------------------------------------------#
# 将处理完的图片传入Retinaface网络当中进行预测
# ---------------------------------------------------#
with torch.no_grad():
# -----------------------------------------------------------#
# 图片预处理,归一化。
# -----------------------------------------------------------#
image = torch.from_numpy(preprocess_input(image).transpose(2, 0, 1)).unsqueeze(0).type(torch.FloatTensor)
if self.cuda:
anchors = anchors.cuda()
image = image.cuda()
# ---------------------------------------------------------#
# 传入网络进行预测
# ---------------------------------------------------------#
loc, conf, landms = self.net(image)
# ---------------------------------------------------#
# Retinaface网络的解码,最终我们会获得预测框
# 将预测结果进行解码和非极大抑制
# ---------------------------------------------------#
boxes = decode(loc.data.squeeze(0), anchors, self.cfg['variance'])
conf = conf.data.squeeze(0)[:, 1:2]
landms = decode_landm(landms.data.squeeze(0), anchors, self.cfg['variance'])
# -----------------------------------------------------------#
# 对人脸检测结果进行堆叠
# -----------------------------------------------------------#
boxes_conf_landms = torch.cat([boxes, conf, landms], -1)
boxes_conf_landms = non_max_suppression(boxes_conf_landms, self.confidence)
if len(boxes_conf_landms) > 0:
# ---------------------------------------------------------#
# 如果使用了letterbox_image的话,要把灰条的部分去除掉。
# ---------------------------------------------------------#
if self.letterbox_image:
boxes_conf_landms = retinaface_correct_boxes(boxes_conf_landms, \
np.array([self.retinaface_input_shape[0],
self.retinaface_input_shape[1]]),
np.array([im_height, im_width]))
boxes_conf_landms[:, :4] = boxes_conf_landms[:, :4] * scale
boxes_conf_landms[:, 5:] = boxes_conf_landms[:, 5:] * scale_for_landmarks
# ---------------------------------------------------#
# Retinaface检测部分-结束
# ---------------------------------------------------#
# -----------------------------------------------#
# Facenet编码部分-开始
# -----------------------------------------------#
face_encodings = []
for boxes_conf_landm in boxes_conf_landms:
# ----------------------#
# 图像截取,人脸矫正
# ----------------------#
boxes_conf_landm = np.maximum(boxes_conf_landm, 0)
crop_img = np.array(old_image)[int(boxes_conf_landm[1]):int(boxes_conf_landm[3]),
int(boxes_conf_landm[0]):int(boxes_conf_landm[2])]
landmark = np.reshape(boxes_conf_landm[5:], (5, 2)) - np.array(
[int(boxes_conf_landm[0]), int(boxes_conf_landm[1])])
crop_img, _ = Alignment_1(crop_img, landmark)
# ----------------------#
# 人脸编码
# ----------------------#
crop_img = np.array(letterbox_image(np.uint8(crop_img),
(self.facenet_input_shape[1], self.facenet_input_shape[0]))) / 255
crop_img = np.expand_dims(crop_img.transpose(2, 0, 1), 0)
with torch.no_grad():
crop_img = torch.from_numpy(crop_img).type(torch.FloatTensor)
if self.cuda:
crop_img = crop_img.cuda()
# -----------------------------------------------#
# 利用facenet_model计算长度为128特征向量
# -----------------------------------------------#
face_encoding = self.facenet(crop_img)[0].cpu().numpy()
face_encodings.append(face_encoding)
# -----------------------------------------------#
# Facenet编码部分-结束
# -----------------------------------------------#
# -----------------------------------------------#
# 人脸特征比对-开始
# -----------------------------------------------#
face_names = []
for face_encoding in face_encodings:
# -----------------------------------------------------#
# 取出一张脸并与数据库中所有的人脸进行对比,计算得分
# -----------------------------------------------------#
matches, face_distances = compare_faces(self.known_face_encodings, face_encoding,
tolerance=self.facenet_threhold)
name = "Unknown"
# -----------------------------------------------------#
# 取出这个最近人脸的评分
# 取出当前输入进来的人脸,最接近的已知人脸的序号
# -----------------------------------------------------#
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
name = self.known_face_names[best_match_index]
face_names.append(name)
# -----------------------------------------------#
# 人脸特征比对-结束
# -----------------------------------------------#
t1 = time.time()
for _ in range(test_interval):
with torch.no_grad():
# ---------------------------------------------------------#
# 传入网络进行预测
# ---------------------------------------------------------#
loc, conf, landms = self.net(image)
# ---------------------------------------------------#
# Retinaface网络的解码,最终我们会获得预测框
# 将预测结果进行解码和非极大抑制
# ---------------------------------------------------#
boxes = decode(loc.data.squeeze(0), anchors, self.cfg['variance'])
conf = conf.data.squeeze(0)[:, 1:2]
landms = decode_landm(landms.data.squeeze(0), anchors, self.cfg['variance'])
# -----------------------------------------------------------#
# 对人脸检测结果进行堆叠
# -----------------------------------------------------------#
boxes_conf_landms = torch.cat([boxes, conf, landms], -1)
boxes_conf_landms = non_max_suppression(boxes_conf_landms, self.confidence)
if len(boxes_conf_landms) > 0:
# ---------------------------------------------------------#
# 如果使用了letterbox_image的话,要把灰条的部分去除掉。
# ---------------------------------------------------------#
if self.letterbox_image:
boxes_conf_landms = retinaface_correct_boxes(boxes_conf_landms, \
np.array([self.retinaface_input_shape[0],
self.retinaface_input_shape[1]]),
np.array([im_height, im_width]))
boxes_conf_landms[:, :4] = boxes_conf_landms[:, :4] * scale
boxes_conf_landms[:, 5:] = boxes_conf_landms[:, 5:] * scale_for_landmarks
# ---------------------------------------------------#
# Retinaface检测部分-结束
# ---------------------------------------------------#
# -----------------------------------------------#
# Facenet编码部分-开始
# -----------------------------------------------#
face_encodings = []
for boxes_conf_landm in boxes_conf_landms:
# ----------------------#
# 图像截取,人脸矫正
# ----------------------#
boxes_conf_landm = np.maximum(boxes_conf_landm, 0)
crop_img = np.array(old_image)[int(boxes_conf_landm[1]):int(boxes_conf_landm[3]),
int(boxes_conf_landm[0]):int(boxes_conf_landm[2])]
landmark = np.reshape(boxes_conf_landm[5:], (5, 2)) - np.array(
[int(boxes_conf_landm[0]), int(boxes_conf_landm[1])])
crop_img, _ = Alignment_1(crop_img, landmark)
# ----------------------#
# 人脸编码
# ----------------------#
crop_img = np.array(letterbox_image(np.uint8(crop_img), (
self.facenet_input_shape[1], self.facenet_input_shape[0]))) / 255
crop_img = np.expand_dims(crop_img.transpose(2, 0, 1), 0)
with torch.no_grad():
crop_img = torch.from_numpy(crop_img).type(torch.FloatTensor)
if self.cuda:
crop_img = crop_img.cuda()
# -----------------------------------------------#
# 利用facenet_model计算长度为128特征向量
# -----------------------------------------------#
face_encoding = self.facenet(crop_img)[0].cpu().numpy()
face_encodings.append(face_encoding)
# -----------------------------------------------#
# Facenet编码部分-结束
# -----------------------------------------------#
# -----------------------------------------------#
# 人脸特征比对-开始
# -----------------------------------------------#
face_names = []
for face_encoding in face_encodings:
# -----------------------------------------------------#
# 取出一张脸并与数据库中所有的人脸进行对比,计算得分
# -----------------------------------------------------#
matches, face_distances = compare_faces(self.known_face_encodings, face_encoding,
tolerance=self.facenet_threhold)
name = "Unknown"
# -----------------------------------------------------#
# 取出这个最近人脸的评分
# 取出当前输入进来的人脸,最接近的已知人脸的序号
# -----------------------------------------------------#
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
name = self.known_face_names[best_match_index]
face_names.append(name)
# -----------------------------------------------#
# 人脸特征比对-结束
# -----------------------------------------------#
t2 = time.time()
tact_time = (t2 - t1) / test_interval
return tact_time
这个代码实现了对视频和图片进行人脸检测和活体检测的功能,主要包含以下部分:
主要功能有:
两个类通过读取视频帧,调用人脸检测模型,实现了视频流中人脸的检测和活体检测。
总体来说,代码实现了图片和视频人脸检测的基本流程,包含了一些额外的活体检测逻辑,可以用来构建视频监控、人脸识别等应用。
import time
import cv2
import numpy as np
from retinaface import Retinaface
import dlib
def _largest_face(dets):
if len(dets) == 1:
return 0
face_areas = [(det.right() - det.left()) * (det.bottom() - det.top()) for det in dets]
largest_area = face_areas[0]
largest_index = 0
for index in range(1, len(dets)):
if face_areas[index] > largest_area:
largest_index = index
largest_area = face_areas[index]
print("largest_face index is {} in {} faces".format(largest_index, len(dets)))
return largest_index
# 计算眼睛的长宽比:eye aspect ratio (EAR)
def _eye_aspect_ratio(eye):
A = np.linalg.norm(eye[1] - eye[5])
B = np.linalg.norm(eye[2] - eye[4])
C = np.linalg.norm(eye[0] - eye[3])
ear = (A + B) / (2.0 * C)
return ear
# 对单张图片进行人脸检测
def detect_image(img, temp_img_path):
retinaface = Retinaface()
image = cv2.imread(img)
if image is None:
print('Open Error! Try again!')
return
else:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
r_image = retinaface.detect_image(image)
r_image = cv2.cvtColor(r_image, cv2.COLOR_RGB2BGR)
# cv2.imshow("after", r_image)
# cv2.waitKey(0)
if temp_img_path != "":
# 保存到临时文件
cv2.imwrite(temp_img_path, r_image)
print("Save processed img to the path :" + temp_img_path)
return temp_img_path
# 返回临时文件路径
class LiveVideoDetector:
def __init__(self, video_path, video_save_path="", video_fps=25.0, use_camera=False):
if use_camera:
self.capture = cv2.VideoCapture(0)
else:
self.capture = cv2.VideoCapture(video_path)
self.video_save_path = video_save_path
if video_save_path != "":
fourcc = cv2.VideoWriter_fourcc(*'XVID')
size = (int(self.capture.get(cv2.CAP_PROP_FRAME_WIDTH)), int(self.capture.get(cv2.CAP_PROP_FRAME_HEIGHT)))
self.out = cv2.VideoWriter(video_save_path, fourcc, video_fps, size)
ref, frame = self.capture.read()
if not ref:
raise ValueError("未能正确读取摄像头(视频),请注意是否正确安装摄像头(是否正确填写视频路径)。")
self.fps = 0.0
self.frame_counter = 0
self.blink_counter = 0
self.detector = dlib.get_frontal_face_detector()
self.predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
self.flag = 0
self.fname = None
self.retinaface = Retinaface()
def process_frame(self):
t1 = time.time()
ref, frame = self.capture.read()
if not ref:
return None
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = self.detector(gray, 0)
# 集成眨眼检测
if len(faces) != 0:
largest_index = _largest_face(faces)
face_rectangle = faces[largest_index]
landmarks = np.matrix([[p.x, p.y] for p in self.predictor(frame, face_rectangle).parts()])
left_eye = landmarks[42:48]
right_eye = landmarks[36:42]
EAR_left = _eye_aspect_ratio(left_eye)
EAR_right = _eye_aspect_ratio(right_eye)
ear = (EAR_left + EAR_right) / 2.0
if ear < 0.21:
self.frame_counter += 1
status = "Blinking"
else:
if self.frame_counter >= 3:
self.blink_counter += 1
self.frame_counter = 0
status = "Open"
cv2.putText(frame, "Blinks: {}".format(self.blink_counter), (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7,
(0, 0, 255), 2)
cv2.putText(frame, "EAR: {:.2f}".format(ear), (300, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.putText(frame, "Status: {}".format(status), (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 0), 2)
if self.blink_counter >= 2: # If blinks are more than the threshold, perform face recognition
self.flag = 1
cv2.putText(frame, "Liveness: Yes", (10, 120), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
else:
self.flag = 0
cv2.putText(frame, "Liveness: No", (10, 120), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# 进行检测
old_image = self.retinaface.live_detect_image(frame, self.flag)
frame = np.array(old_image)
# RGBtoBGR满足opencv显示格式
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
# 计算fps
self.fps = (self.fps + (1. / (time.time() - t1))) / 2
print("fps= %.2f" % (self.fps))
frame = cv2.putText(frame, "fps= %.2f" % (self.fps), (300, 60), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
if self.video_save_path != "":
self.out.write(frame)
return frame
def release(self):
print("Video Detection Done!")
self.capture.release()
if self.video_save_path != "":
print("Save processed video to the path:" + self.video_save_path)
self.out.release()
def get_blink_counter(self):
return self.blink_counter
class VideoDetector:
def __init__(self, video_path, video_save_path="", video_fps=25.0, use_camera=False):
if use_camera:
self.capture = cv2.VideoCapture(0)
else:
self.capture = cv2.VideoCapture(video_path)
self.video_save_path = video_save_path
if video_save_path != "":
fourcc = cv2.VideoWriter_fourcc(*'XVID')
size = (int(self.capture.get(cv2.CAP_PROP_FRAME_WIDTH)), int(self.capture.get(cv2.CAP_PROP_FRAME_HEIGHT)))
self.out = cv2.VideoWriter(video_save_path, fourcc, video_fps, size)
ref, frame = self.capture.read()
if not ref:
raise ValueError("未能正确读取摄像头(视频),请注意是否正确安装摄像头(是否正确填写视频路径)。")
self.fps = 0.0
self.retinaface = Retinaface()
def process_frame(self):
t1 = time.time()
# 读取某一帧
ref, frame = self.capture.read()
if not ref:
return None
# 格式转变,BGRtoRGB
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# 进行检测
frame = np.array(self.retinaface.detect_image(frame))
# RGBtoBGR满足opencv显示格式
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
self.fps = (self.fps + (1. / (time.time() - t1))) / 2
print("fps= %.2f" % (self.fps))
frame = cv2.putText(frame, "fps= %.2f" % (self.fps), (0, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
if self.video_save_path != "":
self.out.write(frame)
return frame
def release(self):
print("Video Detection Done!")
self.capture.release()
if self.video_save_path != "":
print("Save processed video to the path :" + self.video_save_path)
self.out.release()
import os
from retinaface import Retinaface
import gradio as gr
import cv2
from enperdict import VideoDetector, detect_image, LiveVideoDetector
def detect_upload(video_path, video_save_path='output/result.avi', video_fps=25.0):
video_path = video_path.name
# 上传视频文件并进行人脸识别
detector = VideoDetector(video_path, video_save_path, video_fps)
while True:
frame = detector.process_frame()
if frame is None:
break
cv2.imshow("frame", frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
detector.release()
cv2.destroyAllWindows()
print(f"Returning video path: {video_save_path}")
return video_save_path
def detect_realtime(video_path=None, video_save_path='output/result.mp4', video_fps=25.0):
# 开启摄像头实时进行人脸识别
video_path = 0
detector = VideoDetector(video_path, "", video_fps)
while True:
frame = detector.process_frame()
if frame is None:
break
cv2.imshow("frame", frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
detector.release()
cv2.destroyAllWindows()
def live_detect_realtime(video_path=None, video_save_path='output/result.mp4', video_fps=25.0):
# 开启摄像头实时进行人脸识别
video_path = 0
detector = LiveVideoDetector(video_path, "", video_fps)
while True:
flag = detector.get_blink_counter()
frame = detector.process_frame()
if frame is None:
break
cv2.imshow("frame", frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
if flag == 2:
cv2.imwrite("last_frame.png", frame)
break
detector.release()
cv2.destroyAllWindows()
return "last_frame.png"
def detect_image_change(image=None):
image_path = image.name
temp_img_path = "output/result.jpg"
result = detect_image(image_path, temp_img_path)
return result
num = 0
def encode_faces():
'''
在更换facenet网络后一定要重新进行人脸编码,运行encoding.py。
'''
retinaface = Retinaface(1)
list_dir = os.listdir("face_dataset")
image_paths = []
names = []
for name in list_dir:
image_paths.append("face_dataset/" + name)
names.append(name.split("_")[0])
retinaface.encode_face_dataset(image_paths, names)
return "Encoding complete!"
webcam = gr.Image(label="Webcam")
def capture_photo(name, img):
"""
:param name:
:param img:
:return:
"""
if name == "":
return "Name cannot be empty!"
if img is None:
return "img cannot be empty"
if webcam is gr.Image(label="Webcam"):
return "Please click the 'Start Webcam' button first!"
else:
global num
num += 1
cv2.imwrite("face_dataset/" + name + "_" + str(num) + ".jpg", img)
return "success to save" + name + "_" + str(num) + ".jpg"
def start_webcam():
global webcam
webcam = gr.Image(source="webcam", label="Webcam")
webcam.show()
# live_detect_realtime()
with gr.Blocks() as demo:
with gr.Tab("图片人脸识别(可测试图片在img_test)"):
image_input = gr.File(label="Image")
image_output = gr.Image(label="Output Image")
image_button = gr.Button("Detect")
image_button.click(detect_image_change, inputs=image_input, outputs=image_output)
with gr.Tab("照相"):
image_input = [gr.components.Textbox(label="Name(格式为name_数字.jpg,连拍数字会递增,存在face_dataset)"),
gr.components.Image(source="webcam", label="Webcam"),
]
image_output = gr.components.Textbox(label="output")
image_button = gr.Button("提交")
image_button.click(capture_photo, inputs=image_input, outputs=image_output)
with gr.Tab("数据库更新"):
encode_button = gr.Button("Encode")
encode_output = gr.Textbox(label="Output")
encode_button.click(encode_faces, outputs=encode_output)
with gr.Tab("视频上传人脸识别(点弹出的视频框英文输入法按q可提前退出,保存在output)"):
video_input = gr.File(label="video_path")
# video_output = gr.Video(label="Output Video")
video_output = gr.File(label="Output Video")
upload_button = gr.Button("Upload")
upload_button.click(detect_upload, inputs=video_input, outputs=video_output)
with gr.Tab("实时人脸识别(使用前先禁用浏览器摄像头权限,避免摄像头冲突,点弹出的视频框英文输入法按q退出)"):
realtime_button = gr.Button("Start")
# realtime_output = gr.Video(label="Output Video")
realtime_button.click(detect_realtime)
with gr.Tab("实时人脸识别plus(使用前先禁用浏览器摄像头权限,避免摄像头冲突,点弹出的视频框英文输入法按q退出)"):
realtime_button = gr.Button("Start")
# realtime_output = gr.Video(label="Output Video")
live_output = [
gr.Image(label="Output Image")
]
realtime_button.click(live_detect_realtime, outputs=live_output)
demo.launch()
RetinaFace-FaceNet/shape_predictor_68_face_landmarks.dat
来源于davisking/dlib-models
打包方式基于
半自动化使用.bat手动打包迁移python项目
rem 创建虚拟环境
python -m venv venv
call venv\Scripts\activate.bat
python -m pip install -i https://mirrors.aliyun.com/pypi/simple/ --upgrade pip setuptools
pip install dlib-19.19.0-cp38-cp38-win_amd64.whl.whl
pip install -i https://mirrors.aliyun.com/pypi/simple/ opencv-python==4.5.3.56
pip install torch-1.7.1+cu110-cp38-cp38-win_amd64.whl
pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
pip install -i https://mirrors.aliyun.com/pypi/simple/ gradio
pip install -i https://mirrors.aliyun.com/pypi/simple/ scikit-learn
pip install -i https://mirrors.aliyun.com/pypi/simple/ -r requirements.txt
requirements.txt
scipy==1.7.1
numpy==1.21.2
matplotlib==3.4.3
opencv_python==4.5.3.56
torch==1.7.1
torchvision==0.8.2
tqdm==4.62.2
Pillow==8.3.2
h5py==2.10.0
通过该系统,我们可以对图片、视频甚至实时摄像进行人脸检测和识别。同时可以建立人脸数据库、进行数据库编码来优化识别效果。系统具有一定的实用价值,可以继续扩展更多的人脸分析功能。