数据结构和算法
前言
2016年又是一个全新的开始,每到一年的这个时候,总是颇有感慨。想对过去的一年做一些总结,但又觉得经历和精力总是不够。
俗话说,一年之计在于春,当然,新的一年,也总是计划着N多事情,想做什么事情?做到什么程度?哪些一定要做好?哪些一定要完成?每一年都会列出来,到最后却发现,在这走过的一年里,有时候完全没有按照原定的路线执行。所以,针对于此,我便不再对自己进行规划,当然并不代表没有目标。我把时间分的更加粗颗粒化,不再细化到没有余地,因为生活本来就充满了变化。人不能做到按照原定的计划一步一步的执行,我必须承认这一点。不是有句话吗,计划赶不上变化。
在这里,我要说的是,在这一年里,我会尝试着回顾一些基础的知识,比如数据结构,比如算法设计与分析。因为,自从大学毕业到现在也有2年了,数据结构和算法里面的N多概念已经忘记的快没有印象了。但我又不得不说的是,这些最基础的,对于一个程序员的提升也是最必要的。这大概就是程序员和工程师的区别吧。
我要声明的是,我在今后的日子里,会接二连三的更新一些关于数据结构和算法的知识。但时间会存在不确定性,可能会每隔两天就出一篇文章,可能是一个星期,当然也可能是一个月,这些东西是我不能控制的。所以,还请广大博友理解!
废话少说,时间不等人,直入主题!
数据结构这门课程不太好学,在大学的时候老师讲的都听明白了,但是现在依旧忘记了很多。如果你想让自己的编程能力有质的飞跃,不再停留于调用现成的东西而是追求更完美的实现,那么这是你大学毕业后的必修课!
什么是数据结构
概念
官方定义:
数据结构是一门研究非数值计算的程序设计问题中的操作对象,以及它们之间的关系和操作等相关问题的学科。
我的理解:
程序设计 = 数据结构 + 算法
数据结构,顾名思义,就是数据之间的结构关系,或者理解成数据元素相互之间存在的一种或多种特定关系的集合。当然这些概念都是大学喜欢考的,我们没必要纠结于这个概念,有自己恰当的、并且可以为他人所接受的解释就可以。
数据结构中结构的概念
数据结构中的结构,也就是我们研究的主体对象。数据结构中我们很少研究数据,因为数据在内存中的表现形式对于我们都是一样的,也就是二进制。传统上,我们把数据结构分为逻辑结构和物理结构。
逻辑结构
指反映数据元素之间的逻辑关系的数据结构,其中的逻辑关系是指数据元素之间的前后关系,而与他们在计算机中的存储位置无关。逻辑结构分为以下四类:
1.集合结构
集合结构中的数据元素同属于一个集合,他们之间是并列的关系,除此之外没有其他关系。如下图,可以很好的表示集合结构中的元素之间的关系:
2.线性结构
线性结构中的元素存在一对一的相互关系。如下图,可以很好的表示线性结构中的元素之间的关系:
3.树形结构
树形结构中的元素存在一对多的相互关系。如下图,可以很好的表示树形结构中的元素之间的关系:
4.图形结构
图形结构中的元素存在多对多的相互关系。如下图,可以很好的表示图形结构中的元素之间的关系:
物理结构
物理结构又叫存储结构,指数据的逻辑结构在计算机存储空间的存放形式。通俗的讲,物理结构研究的是数据在存储器中存放的形式。 存储器主要针对于内存而言,像硬盘、软盘、光盘等外部存储器的数据组织通常用文件结构来描述。
数据在内存中的存储结构,也就是物理结构,分为两种:顺序存储结构和链式存储结构。
顺序存储结构
顺序存储结构:是把数据元素存放在地址连续的存储单元里,其数据间的逻辑关系和物理关系是一致的。数组就是顺序存储结构的典型代表。其在内存中的存储形式类似于下图:
链式存储结构
链式存储结构:是把数据元素存放在内存中的任意存储单元里,也就是可以把数据存放在内存的各个位置。这些数据在内存中的地址可以是连续的,也可以是不连续的。
和顺序存储结构不同的是,链式存储结构的数据元素之间是通过指针来连接的,我们可以通使用指针来找到某个数据元素的位置,然后对这个数据元素进行一些操作。如下图,可以帮助我们理解链式存储结构:
顺序存储结构和链式存储结构的区别
打个比方说一下顺序存储结构和链式存储结构的区别:
比如去银行取钱,顺序存储结构就相当于,所有的客户按照先来后到的顺序有序的的坐在大厅的椅子上(注意:是有顺序的坐着哦)。
而链式存储结构相当于,所有的客户只要一到银行,大堂经理就给他们每人一个号码,然后他们可以随便坐在哪个椅子上(随便坐,不需要按照什么顺序坐),只需要等待工作人员广播叫号即可。
而每个客户手里的号码就相当于指针,当前的指针指向下一个存储空间,这样,所有不连续的空间就可以被有顺序的按照线性连接在一起了。
算法
说到数据结构,必须要一并带上算法,在笔者看来,不谈算法的数据结构只是你理解了概念,只能够出去装X而已。即谈数据结构又谈算法才能够真正装爷。只可惜,以我现在脑海里残留的一点概念,我出去只能够装X。废话少说,直接行干货!
算法的概念
是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。
以上是我在百度百科找到的解释,在我看来,算法就是求解一个问题所需要的步骤所形成的解决方法,每一步包括一个或者多个操作。无论是现实生活中还是计算机中,解决同一个问题的方法可能有很多种,在这N多种算法中,肯定存在一个执行效率最快的方法,那么这个方法就是最优算法。
算法的特性
算法具有五个基本特征:输入、输出、有穷性、确定性和可行性。
输入
一个算法具有零个或者多个输出。以刻画运算对象的初始情况,所谓0个输入是指算法本身定出了初始条件。后面一句话翻译过来就是,如果一个算法本身给出了初始条件,那么可以没有输出。比如,打印一句话:NSLog(@"你最牛逼!");
输出
算法至少有一个输出。也就是说,算法一定要有输出。输出的形式可以是打印,也可以使返回一个值或者多个值等。也可以是显示某些提示。
有穷性
算法的执行步骤是有限的,算法的执行时间也是有限的。
确定性
算法的每个步骤都有确定的含义,不会出现二义性。
可行性
算法是可用的,也就是能够解决当前问题。
当然,回过头来一看,这五个特性都是废话,并且依稀记得大学老师都教过。所以,我们不用浪费脑力在这些不必要的概念上,因为大学早已离我远去,考试什么的跟我也没有一毛钱关系,只要知道这么回事就好。
算法的设计要求
要设计一个好的算法,需要考虑以下4个特性(其实多半是废话)。
正确性
废话,谁会设计一个不能够解决问题的方法。
可读性
指算法无论是从设计思路上,还是从注释方面,都要能够保证算法是可读的,也就是可以被其他人员能够读懂的。其实也是废话,这是一个优秀的程序员必备的。
健壮性
通俗的讲,一个好的算法应该具有捕获异常/处理异常的能力。另外,对于测试人员的压力测试、边界值测试等刁难的测试手段,算法应该能够轻松的扛过去。
时间效率高和存储量低
这其实是两个概念,时间效率就是指的时间复杂度,存储量就是指的空间复杂度。翻译过来就是一个好的算法应该考虑时间复杂度和空间复杂度。而往往时间复杂度和空间复杂度是相互弥补的。也就是从某些角度,我们可以了通过牺牲算法运算时间的方式来减少对内存的占用,反之亦然。对于时间复杂度和空间复杂度这两个概念,大家不用泰国迷惑,我会拿出来一篇文章专门讲解,请大家稍安勿躁,持续关注。