- Python通关秘籍之基础教程(一)
Smile丶Life丶
Python通关指南:从零基础到高手之路python开发语言后端
引言在编程的世界里,Python就像一位温和而强大的导师,它以简洁优雅的语法和强大的功能吸引着无数初学者和专业人士。无论你是想开发网站、分析数据、构建人工智能,还是仅仅想学习编程思维,Python都是你的理想选择。Python的魅力在于它的易读性和广泛的应用场景。它的代码就像英语句子一样自然,即使是完全没有编程经验的人也能快速上手。同时,Python拥有庞大的生态系统,从Web开发(Django、
- 多模态大模型发展全景:从架构创新到应用突破
陈敬雷-充电了么-CEO兼CTO
python大模型多模态大模型AIGC机器学习深度学习DeepSeek
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《GPT多模态大模型与AIAgent智能体》(跟我一起学人工智能)【陈敬雷编著】【清华大学出版社】《GPT多模态大模型与AIAgent智能体》新出书籍配套视频【陈敬雷】推荐算法系统实战全系列精品课【陈敬雷】文章目录GPT多模态大模型系列四多模态大模型发展全景:从架构创新到应用突破更多技术内容总结GPT多模态大模型系列四多模态大模型
- ollama v0.9.6版本发布详解:修复启动屏幕样式及新增工具名称参数支持
福大大架构师每日一题
文心一言vschatgptollama
作为近年来备受瞩目的开源对话式人工智能框架之一,ollama持续更新优化其产品,致力于为开发者带来更稳定、高效的使用体验。2025年7月8日,ollama发布了v0.9.6版本,这一版本在用户界面和API的可用性方面做出了重要改进,进一步增强了开发和集成的便捷性。本文将对ollamav0.9.6版本的更新内容进行全面解析,详细介绍新特性、修复的具体问题、应用示例及最佳实践,帮助开发者快速掌握和应用
- AI人工智能与机器学习的大数据融合应用
AI智能探索者
人工智能机器学习大数据ai
AI人工智能与机器学习的大数据融合应用关键词:AI人工智能、机器学习、大数据、融合应用、数据挖掘摘要:本文深入探讨了AI人工智能与机器学习在大数据融合应用方面的相关内容。首先介绍了研究的背景、目的、预期读者和文档结构,对核心术语进行了清晰定义。接着阐述了AI、机器学习和大数据的核心概念及相互联系,给出了形象的文本示意图和Mermaid流程图。详细讲解了核心算法原理,并通过Python源代码进行说明
- 深入解读 Qwen3 技术报告(一):引言
小爷毛毛(卓寿杰)
大模型AIGC深度学习基础/原理人工智能自然语言处理python语言模型深度学习
重磅推荐专栏:《大模型AIGC》《课程大纲》《知识星球》本专栏致力于探索和讨论当今最前沿的技术趋势和应用领域,包括但不限于ChatGPT和StableDiffusion等。我们将深入研究大型模型的开发和应用,以及与之相关的人工智能生成内容(AIGC)技术。通过深入的技术解析和实践经验分享,旨在帮助读者更好地理解和应用这些领域的最新进展1.引言:迎接大型语言模型的新纪元我们正处在一个由人工智能(AI
- AI人工智能遇上TensorFlow:技术融合新趋势
AI大模型应用之禅
人工智能tensorflowpythonai
AI人工智能遇上TensorFlow:技术融合新趋势关键词:人工智能、TensorFlow、深度学习、神经网络、机器学习、技术融合、AI开发摘要:本文深入探讨了人工智能技术与TensorFlow框架的融合发展趋势。我们将从基础概念出发,详细分析TensorFlow在AI领域的核心优势,包括其架构设计、算法实现和实际应用。文章包含丰富的技术细节,如神经网络原理、TensorFlow核心算法实现、数学
- 边缘人工智能与医疗AI融合发展路径:技术融合与应用前景(上)
Allen_Lyb
数智化医院2025人工智能健康医疗算法
引言人工智能技术正以前所未有的速度改变着医疗保健领域,从辅助诊断到个性化治疗,AI应用的广度和深度不断拓展。在这一浪潮中,边缘人工智能(EdgeAI)作为一种新兴技术范式,正成为推动医疗AI创新的关键力量。边缘AI区别于传统的云计算模式,它将数据处理和AI模型部署在数据源头附近,实现快速响应和隐私保护。这种特性使其在医疗保健领域具有独特优势,特别是在实时监测、紧急响应和患者隐私保护等方面。边缘AI
- AI人工智能领域中AI作画的技术优势
AI大模型应用之禅
人工智能AI作画ai
AI人工智能领域中AI作画的技术优势关键词:AI作画、技术优势、人工智能、艺术创作、图像生成摘要:本文深入探讨了AI人工智能领域中AI作画的技术优势。从背景介绍出发,阐述了AI作画的起源与发展,明确了文章的目的、范围、预期读者以及文档结构。接着详细分析了AI作画的核心概念,包括其原理和架构,并通过Mermaid流程图进行直观展示。对核心算法原理进行了深入剖析,结合Python代码示例进行讲解。同时
- 快速掌握Python编程基础
张彦峰ZYF
python
干货分享,感谢您的阅读!备注:本博客将自己初步学习Python的总结进行分享,希望大家通过本博客可以在短时间内快速掌握Python的基本程序编码能力,如有错误请留言指正,谢谢!(持续更新)一、快速了解Python和环境准备(一)Python快速介绍Python是一种简洁、强大、易读的编程语言,广泛应用于Web开发、数据分析、人工智能、自动化运维等领域。它由GuidovanRossum在1991年设
- 人工智能 开源的大模型训练微调框架LLaMA-Factory
LLaMA-Factory是一个开源的大模型训练微调框架,具有模块化设计和多种高效的训练方法,能够满足不同用户的需求。用户可以通过命令行或Web界面进行操作,实现个性化的语言模型微调。LLaMA-Factory是一个专注于高效微调LLaMA系列模型的开源框架(GitHub项目地址:https://github.com/hiyouga/LLaMA-Factory)。它以极简配置、低资源消耗和对中文任
- 智慧城市大脑解决方案
智慧城市大脑背景与意义智慧城市大脑作为城市管理的创新模式,通过集成大数据、人工智能等技术,实现了对城市运行的全面感知与智能决策。它不仅提升了城市管理效率,还为市民带来了更加便捷、安全的生活体验。智慧城市大脑建设历程某城市作为智慧城市大脑的创新策源地,自2016年起便与阿里巴巴集团深度合作,投入巨资自主研发城市数据大脑“交通小脑”平台。该平台成功接入了大量视频和数据,实现了对道路和时间资源的再分配,
- csdn-AI测评
Right.W
人工智能
一、你平时会使用这类AI工具吗?你对这类型的工具有什么看法?AI工具灵活、多样、能够回答各种问题,大为方便了人们日常学习、工作、生活的需要。目前很流行的chartgpt就是一款超火爆的ai工具,可以写论文、敲代码各种功能十分强大,为各个领域的数字化和智能化进程给予了很大帮助。但是人的智慧和意识是机器无法取代的,人类对人工智能不能过度依赖,人工智能只是改善生活、提高效率的工具而已。二、你可以花几分钟
- 智慧城市大脑:城市治理的新引擎
Fulima_cloud
智慧城市人工智能
在科技日新月异的今天,智慧城市的概念已经深入人心。而智慧城市大脑,作为智慧城市的中枢神经系统,运用大数据、云计算、物联网、人工智能等先进技术,构建的城市级智能化管理体系,正逐步成为提升城市治理能力、优化城市服务、推动城市可持续发展的重要力量。智慧城市大脑是什么,简而言之,是运用大数据、云计算、物联网、人工智能等先进技术,构建的城市级智能化管理体系。它如同城市的“智慧中枢”,通过对城市全域运行数据的
- 【亲测免费】 探索AudioSlicer:智能音频分割工具
秦贝仁Lincoln
探索AudioSlicer:智能音频分割工具去发现同类优质开源项目:https://gitcode.com/项目介绍AudioSlicer是一个基于Python的轻量级工具,专门用于切割.wav音频文件。它通过检测静音段将音频拆分成多个独立样本,并生成一个.json文件,详细记录了每个切片的时间范围。该项目灵感源自AndrewPhillipDoss的工作,现在正向着人工智能适应的方向发展,有望实现
- 人工智能怎么入门?零基础入门指南:从小白到AI实战者的第一步
OpenCV图像识别
人工智能人工智能计算机视觉自然语言处理神经网络机器学习
人工智能(AI)是当今最具前景的科技领域之一。从聊天机器人到自动驾驶,从图像识别到语音翻译,AI正在以前所未有的速度改变世界。但对于初学者来说,一个最常见的问题是:“我没有基础,也不是学数学或计算机的,人工智能还能学吗?我该怎么入门?”答案是:可以学,而且你并不孤单。越来越多的人正在以“跨专业、转行、自学”的方式进入AI领域。关键是,你需要一个清晰的入门路径,理解应该先做什么、学什么、避开什么误区
- 深度学习基础与应用:从理论到实战
创新工场
本文还有配套的精品资源,点击获取简介:深度学习是人工智能的核心分支,通过模拟人脑神经网络处理大量数据以执行复杂任务。Python因其简洁性和强大的库支持成为深度学习研究的首选语言。本文概述了深度学习基础概念、核心算法、Python框架,并假设了一个包含教程、示例代码、数据集、交互式学习环境、性能评估指标和进阶主题的“deep-learning-study-main”压缩包内容,旨在帮助学习者深入理
- 从点子到原型只需10分钟:用 Copilot 快速验证产品功能
网罗开发
AI大模型Python技术汇总人工智能copilot
网罗开发(小红书、快手、视频号同名) 大家好,我是展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、HarmonyOS、Java、Python等方向。在移动端开发、鸿蒙开发、物联网、嵌入式、云原生、开源等领域有深厚造诣。图书作者:《ESP32-C3物联网工程开发实战》图书作者:《SwiftUI入门,进阶与实战》超级个体:CO
- 阿里开源WebSailor:超越闭源模型的网络智能体新星
WebSailor简介与开源背景在人工智能领域持续创新的浪潮中,阿里通义实验室于2025年7月正式开源了其突破性成果——WebSailor网络智能体。这一开源项目标志着中国企业在复杂推理与检索技术领域的重要突破,其设计初衷直指开源生态中长期存在的关键短板:面对超高不确定性任务时的系统性推理能力缺失。填补开源生态的关键空白WebSailor的诞生源于一个被长期忽视的技术鸿沟。根据斯坦福大学《2025
- RAG实战指南 Day 11:文本分块策略与最佳实践
在未来等你
RAG实战指南RAG检索增强生成文本分块语义分割文档处理NLP人工智能
【RAG实战指南Day11】文本分块策略与最佳实践文章标签RAG,检索增强生成,文本分块,语义分割,文档处理,NLP,人工智能,大语言模型文章简述文本分块是RAG系统构建中的关键环节,直接影响检索准确率。本文深入解析5种主流分块技术:1)固定大小分块的实现与调优技巧;2)基于语义的递归分割算法;3)文档结构感知的分块策略;4)LLM增强的智能分块方法;5)多模态混合内容处理方案。通过电商知识库和科
- Spring AI:Tool Calling
虾条_花吹雪
SpringAIaijava
工具调用(也称为函数调用)是人工智能应用程序中的一种常见模式,允许模型与一组API或工具交互,以增强其功能。工具主要用于:信息检索。此类工具可用于从外部源(如数据库、web服务、文件系统或web搜索引擎)检索信息。目标是增强模型的知识,使其能够回答否则无法回答的问题。因此,它们可用于检索增强生成(RAG)场景。例如,一个工具可用于检索给定位置的当前天气,检索最新的新闻文章,或查询数据库中的特定记录
- AI产品经理技术篇:从传统AI到生成式AI,解密大模型的核心概念
让我看看好学吗
人工智能产品经理学习深度学习自然语言处理
在人工智能技术飞速发展的今天,AI产品经理不仅需要理解业务逻辑,还需深入技术底层,把握从传统AI到生成式AI的演进脉络。传统AI以分类、预测和规则驱动为核心,而生成式AI则颠覆了这一范式,通过大模型实现内容创作、对话生成等创造性任务。这种转变背后,是参数规模、模型架构和训练方式的根本性革新。作为AI产品经理,理解大模型的核心概念至关重要。从“参数”的意义到“Token”的向量化,从Transfor
- 大模型与智能体:螺旋共生,绘就智能新蓝图
东锋17
人工智能大模型智能体人工智能
大模型与智能体:螺旋共生,绘就智能新蓝图在人工智能的前沿领域,大模型与智能体宛如两颗璀璨的星辰,以一种精妙的螺旋共生关系,重塑着智能世界的格局,深刻影响着我们生活与工作的方方面面。大模型:构筑智能大厦的基石大语言模型,像广为人知的GPT-4、通义千问等,凭借在海量数据中深度学习的锤炼,展现出卓越的语言理解与生成天赋。它们就像知识渊博的学者,能熟练应对各类自然语言任务。无论是洋洋洒洒的文章创作,还是
- 人工智能-基础篇-18-什么是RAG(检索增强生成:知识库+向量化技术+大语言模型LLM整合的技术框架)
weisian151
人工智能人工智能语言模型自然语言处理
RAG(Retrieval-AugmentedGeneration,检索增强生成)是一种结合外部知识检索与大语言模型(LLM)生成能力的技术框架,旨在提升生成式AI在问答、内容创作等任务中的准确性、实时性和领域适应性。1、核心概念大语言模型(LLM)的两大局限性:时效性不足:LLM的训练数据截止于某一时间点,无法获取最新信息(如2025年后的新事件)。知识幻觉:当问题超出模型训练数据范围时,LLM
- [论文阅读] 人工智能 + 软件工程 | 需求获取访谈中LLM生成跟进问题研究:来龙去脉与创新突破
需求获取访谈中LLM生成跟进问题研究:来龙去脉与创新突破论文标题:RequirementsElicitationFollow-UpQuestionGenerationarXiv:2507.02858RequirementsElicitationFollow-UpQuestionGenerationYuchenShen,AnmolSinghal,TravisBreauxComments:13page
- 5G 卫星通信应用原理与未来发展趋势(P22314064许飞扬)
Infor_Theory_AHU
信息与通信
5G通信技术及卫星通信应用原理与未来发展趋势一、5G通信技术1.15G通信技术的发展历程与背景移动通信技术历经1G的模拟语音、2G的数字语音、3G的移动数据初步应用、4G的高速移动互联网发展,来到了5G时代。随着物联网、人工智能、虚拟现实等新兴技术的兴起,对通信网络的速率、延迟、连接密度等提出了前所未有的要求,促使5G技术应运而生。2019年,全球多个国家和地区开启5G商用,标志着5G时代正式来临
- 区块链技术促进算力生态发展的具体案例
VV- Wxiaoxwen
软件工程开源软件软件构建
以下是一些区块链技术促进算力生态发展的具体案例:-Origins公链整合GPU资源:Origins公链构建于以太坊之上,致力于连接全球的GPU资源。用户可贡献节点数据及GPU资源,并根据贡献量获得原生代币奖励。它将分散的GPU资源集中,为AI研究机构和企业提供大规模、低成本的算力租赁服务,同时实现了闲置资源的货币化,还利用区块链特性确保数据安全共享与可信验证,促进了区块链与人工智能的深度融合。-百
- 大模型系列——8个最受欢迎的AI爬虫工具
猫猫姐
大模型人工智能爬虫
大模型系列——8个最受欢迎的AI爬虫工具无论你是在构建应用程序、研究一些很酷的东西还是创建营销活动,AI驱动的抓取工具都可以成为你收集实时数据的秘密武器。作为一名软件开发人员,我必须保持技能敏锐。最好的方法是构建模拟应用程序。问题是我经常缺乏真正的用户和数据。这就是人工智能网页抓取工具派上用场的地方。它们帮助我获得真实数据以纳入项目。我最近制作了一个公寓比较工具。这个工具的灵感来自于我在看了很多不
- AI与脑科学:相互启发,探索智能的本质
Liudef06小白
人工智能人工智能
AI与脑科学:相互启发,探索智能的本质人类大脑的物理组件正被逐个映射为数字模型,而人工智能的“黑箱”中则自发涌现出类人的思维结构,两大前沿领域的碰撞正重塑我们对“智能”的理解。2025年初,东南大学黄广斌教授团队发表了一项开创性研究,提出通过“细胞级别的AI孪生方法”将人脑物理组件转换为数字模型,从理论上证明:不受限制的AI能以任意小误差逼近人脑功能,并在25年内超越人类智能。这项集结了哈佛医学院
- SUNDAE-一种称为“光谱剪枝”的技术来优化和压缩3DGS模型
huarzail
3DGS剪枝3d算法
清华大学人工智能产业研究院、伦敦帝国理工学院、北京航空航天大学、北京理工大学、中国科学院大学、香港中文大学(深圳)、中国电信人工智能研究院(TeleAI)EVOL实验室的研究人员联合推出了一种新的3D场景表示方法-SUNDAE,它通过一种称为“光谱剪枝”的技术来优化和压缩3D高斯溅射(3DGaussianSplatting,简称3DGS)模型,同时使用神经网络补偿来保持渲染质量。项目主页:SUND
- 2025年7月-9月广深地区学术会议征稿邀稿 | 2025年7-9月广州学术会议、深圳学术会议参会投稿 | 广深参会 EI 检索会议推荐 | 期待在广东与您相见,共襄学术盛举!
会议名称【点击会议名称查看详情】会议时间会议地点第四届能源与电力系统国际学术会议(ICEEPS2025)2025年7月17-19日广州第七届电子与通信,网络与计算机技术国际学术会议(ECNCT2025)2025年7月18-20日广州2025年人工智能与基础模型国际学术会议(AIFM2025)2025年7月18-20日广州第六届经济管理与大数据应用国际学术会议(ICEMBDA2025)2025年7月
- Enum用法
不懂事的小屁孩
enum
以前的时候知道enum,但是真心不怎么用,在实际开发中,经常会用到以下代码:
protected final static String XJ = "XJ";
protected final static String YHK = "YHK";
protected final static String PQ = "PQ";
- 【Spark九十七】RDD API之aggregateByKey
bit1129
spark
1. aggregateByKey的运行机制
/**
* Aggregate the values of each key, using given combine functions and a neutral "zero value".
* This function can return a different result type
- hive创建表是报错: Specified key was too long; max key length is 767 bytes
daizj
hive
今天在hive客户端创建表时报错,具体操作如下
hive> create table test2(id string);
FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. MetaException(message:javax.jdo.JDODataSto
- Map 与 JavaBean之间的转换
周凡杨
java自省转换反射
最近项目里需要一个工具类,它的功能是传入一个Map后可以返回一个JavaBean对象。很喜欢写这样的Java服务,首先我想到的是要通过Java 的反射去实现匿名类的方法调用,这样才可以把Map里的值set 到JavaBean里。其实这里用Java的自省会更方便,下面两个方法就是一个通过反射,一个通过自省来实现本功能。
1:JavaBean类
1 &nb
- java连接ftp下载
g21121
java
有的时候需要用到java连接ftp服务器下载,上传一些操作,下面写了一个小例子。
/** ftp服务器地址 */
private String ftpHost;
/** ftp服务器用户名 */
private String ftpName;
/** ftp服务器密码 */
private String ftpPass;
/** ftp根目录 */
private String f
- web报表工具FineReport使用中遇到的常见报错及解决办法(二)
老A不折腾
finereportweb报表java报表总结
抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、没有返回数据集:
在存储过程中的操作语句之前加上set nocount on 或者在数据集exec调用存储过程的前面加上这句。当S
- linux 系统cpu 内存等信息查看
墙头上一根草
cpu内存liunx
1 查看CPU
1.1 查看CPU个数
# cat /proc/cpuinfo | grep "physical id" | uniq | wc -l
2
**uniq命令:删除重复行;wc –l命令:统计行数**
1.2 查看CPU核数
# cat /proc/cpuinfo | grep "cpu cores" | u
- Spring中的AOP
aijuans
springAOP
Spring中的AOP
Written by Tony Jiang @ 2012-1-18 (转)何为AOP
AOP,面向切面编程。
在不改动代码的前提下,灵活的在现有代码的执行顺序前后,添加进新规机能。
来一个简单的Sample:
目标类:
[java]
view plain
copy
print
?
package&nb
- placeholder(HTML 5) IE 兼容插件
alxw4616
JavaScriptjquery jQuery插件
placeholder 这个属性被越来越频繁的使用.
但为做HTML 5 特性IE没能实现这东西.
以下的jQuery插件就是用来在IE上实现该属性的.
/**
* [placeholder(HTML 5) IE 实现.IE9以下通过测试.]
* v 1.0 by oTwo 2014年7月31日 11:45:29
*/
$.fn.placeholder = function
- Object类,值域,泛型等总结(适合有基础的人看)
百合不是茶
泛型的继承和通配符变量的值域Object类转换
java的作用域在编程的时候经常会遇到,而我经常会搞不清楚这个
问题,所以在家的这几天回忆一下过去不知道的每个小知识点
变量的值域;
package 基础;
/**
* 作用域的范围
*
* @author Administrator
*
*/
public class zuoyongyu {
public static vo
- JDK1.5 Condition接口
bijian1013
javathreadConditionjava多线程
Condition 将 Object 监视器方法(wait、notify和 notifyAll)分解成截然不同的对象,以便通过将这些对象与任意 Lock 实现组合使用,为每个对象提供多个等待 set (wait-set)。其中,Lock 替代了 synchronized 方法和语句的使用,Condition 替代了 Object 监视器方法的使用。
条件(也称为条件队列或条件变量)为线程提供了一
- 开源中国OSC源创会记录
bijian1013
hadoopsparkMemSQL
一.Strata+Hadoop World(SHW)大会
是全世界最大的大数据大会之一。SHW大会为各种技术提供了深度交流的机会,还会看到最领先的大数据技术、最广泛的应用场景、最有趣的用例教学以及最全面的大数据行业和趋势探讨。
二.Hadoop
&nbs
- 【Java范型七】范型消除
bit1129
java
范型是Java1.5引入的语言特性,它是编译时的一个语法现象,也就是说,对于一个类,不管是范型类还是非范型类,编译得到的字节码是一样的,差别仅在于通过范型这种语法来进行编译时的类型检查,在运行时是没有范型或者类型参数这个说法的。
范型跟反射刚好相反,反射是一种运行时行为,所以编译时不能访问的变量或者方法(比如private),在运行时通过反射是可以访问的,也就是说,可见性也是一种编译时的行为,在
- 【Spark九十四】spark-sql工具的使用
bit1129
spark
spark-sql是Spark bin目录下的一个可执行脚本,它的目的是通过这个脚本执行Hive的命令,即原来通过
hive>输入的指令可以通过spark-sql>输入的指令来完成。
spark-sql可以使用内置的Hive metadata-store,也可以使用已经独立安装的Hive的metadata store
关于Hive build into Spark
- js做的各种倒计时
ronin47
js 倒计时
第一种:精确到秒的javascript倒计时代码
HTML代码:
<form name="form1">
<div align="center" align="middle"
- java-37.有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接
bylijinnan
java
public class MaxCatenate {
/*
* Q.37 有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接,
* 问这n 个字符串最多可以连成一个多长的字符串,如果出现循环,则返回错误。
*/
public static void main(String[] args){
- mongoDB安装
开窍的石头
mongodb安装 基本操作
mongoDB的安装
1:mongoDB下载 https://www.mongodb.org/downloads
2:下载mongoDB下载后解压
 
- [开源项目]引擎的关键意义
comsci
开源项目
一个系统,最核心的东西就是引擎。。。。。
而要设计和制造出引擎,最关键的是要坚持。。。。。。
现在最先进的引擎技术,也是从莱特兄弟那里出现的,但是中间一直没有断过研发的
 
- 软件度量的一些方法
cuiyadll
方法
软件度量的一些方法http://cuiyingfeng.blog.51cto.com/43841/6775/在前面我们已介绍了组成软件度量的几个方面。在这里我们将先给出关于这几个方面的一个纲要介绍。在后面我们还会作进一步具体的阐述。当我们不从高层次的概念级来看软件度量及其目标的时候,我们很容易把这些活动看成是不同而且毫不相干的。我们现在希望表明他们是怎样恰如其分地嵌入我们的框架的。也就是我们度量的
- XSD中的targetNameSpace解释
darrenzhu
xmlnamespacexsdtargetnamespace
参考链接:
http://blog.csdn.net/colin1014/article/details/357694
xsd文件中定义了一个targetNameSpace后,其内部定义的元素,属性,类型等都属于该targetNameSpace,其自身或外部xsd文件使用这些元素,属性等都必须从定义的targetNameSpace中找:
例如:以下xsd文件,就出现了该错误,即便是在一
- 什么是RAID0、RAID1、RAID0+1、RAID5,等磁盘阵列模式?
dcj3sjt126com
raid
RAID 1又称为Mirror或Mirroring,它的宗旨是最大限度的保证用户数据的可用性和可修复性。 RAID 1的操作方式是把用户写入硬盘的数据百分之百地自动复制到另外一个硬盘上。由于对存储的数据进行百分之百的备份,在所有RAID级别中,RAID 1提供最高的数据安全保障。同样,由于数据的百分之百备份,备份数据占了总存储空间的一半,因而,Mirror的磁盘空间利用率低,存储成本高。
Mir
- yii2 restful web服务快速入门
dcj3sjt126com
PHPyii2
快速入门
Yii 提供了一整套用来简化实现 RESTful 风格的 Web Service 服务的 API。 特别是,Yii 支持以下关于 RESTful 风格的 API:
支持 Active Record 类的通用API的快速原型
涉及的响应格式(在默认情况下支持 JSON 和 XML)
支持可选输出字段的定制对象序列化
适当的格式的数据采集和验证错误
- MongoDB查询(3)——内嵌文档查询(七)
eksliang
MongoDB查询内嵌文档MongoDB查询内嵌数组
MongoDB查询内嵌文档
转载请出自出处:http://eksliang.iteye.com/blog/2177301 一、概述
有两种方法可以查询内嵌文档:查询整个文档;针对键值对进行查询。这两种方式是不同的,下面我通过例子进行分别说明。
二、查询整个文档
例如:有如下文档
db.emp.insert({
&qu
- android4.4从系统图库无法加载图片的问题
gundumw100
android
典型的使用场景就是要设置一个头像,头像需要从系统图库或者拍照获得,在android4.4之前,我用的代码没问题,但是今天使用android4.4的时候突然发现不灵了。baidu了一圈,终于解决了。
下面是解决方案:
private String[] items = new String[] { "图库","拍照" };
/* 头像名称 */
- 网页特效大全 jQuery等
ini
JavaScriptjquerycsshtml5ini
HTML5和CSS3知识和特效
asp.net ajax jquery实例
分享一个下雪的特效
jQuery倾斜的动画导航菜单
选美大赛示例 你会选谁
jQuery实现HTML5时钟
功能强大的滚动播放插件JQ-Slide
万圣节快乐!!!
向上弹出菜单jQuery插件
htm5视差动画
jquery将列表倒转顺序
推荐一个jQuery分页插件
jquery animate
- swift objc_setAssociatedObject block(version1.2 xcode6.4)
啸笑天
version
import UIKit
class LSObjectWrapper: NSObject {
let value: ((barButton: UIButton?) -> Void)?
init(value: (barButton: UIButton?) -> Void) {
self.value = value
- Aegis 默认的 Xfire 绑定方式,将 XML 映射为 POJO
MagicMa_007
javaPOJOxmlAegisxfire
Aegis 是一个默认的 Xfire 绑定方式,它将 XML 映射为 POJO, 支持代码先行的开发.你开发服 务类与 POJO,它为你生成 XML schema/wsdl
XML 和 注解映射概览
默认情况下,你的 POJO 类被是基于他们的名字与命名空间被序列化。如果
- js get max value in (json) Array
qiaolevip
每天进步一点点学习永无止境max纵观千象
// Max value in Array
var arr = [1,2,3,5,3,2];Math.max.apply(null, arr); // 5
// Max value in Jaon Array
var arr = [{"x":"8/11/2009","y":0.026572007},{"x"
- XMLhttpRequest 请求 XML,JSON ,POJO 数据
Luob.
POJOjsonAjaxxmlXMLhttpREquest
在使用XMlhttpRequest对象发送请求和响应之前,必须首先使用javaScript对象创建一个XMLHttpRquest对象。
var xmlhttp;
function getXMLHttpRequest(){
if(window.ActiveXObject){
xmlhttp:new ActiveXObject("Microsoft.XMLHTTP
- jquery
wuai
jquery
以下防止文档在完全加载之前运行Jquery代码,否则会出现试图隐藏一个不存在的元素、获得未完全加载的图像的大小 等等
$(document).ready(function(){
jquery代码;
});
<script type="text/javascript" src="c:/scripts/jquery-1.4.2.min.js&quo