About Me: LuckBoyPhd/Resume (github.com)
(1)一种基于三部图网络的协同过滤算法
推荐系统是电子商务领域最重要的技术之一,而协同过滤算法又是推荐系统用得最广泛的.提出了一种基于加权三部图网络的协同过滤算法,用户、产品及标签都被考虑到算法中,并且研究了标签结点的度对用户相似性计算的影响.实验结果表明,此算法在解决用户冷启动问题的同时,还具有较高的推荐准确性.
(2)一种新型的协同过滤推荐算法
当今电子商务推荐系统的应用日益广泛,推荐算法作为推荐系统的核心也得到广泛的研究,协同过滤推荐算法是目前应用最成功的推荐算法之一,但是传统的协同过滤推荐存在数据稀疏性,冷启动和可扩展性等问题.论文针对传统协同过滤算法中出现的问题进行改进.论文的主要工作如下: (1)提出将用户与项目的评分,特征因素结合起来的协同过滤算法.论文改进的算法将用户评分相似度和用户特征相似度相结合选取用户最近邻居计算用户预测评分,同时将项目评分相似度和项目特征相似度相结合选取项目最近邻居计算项目预测评分,然后将用户预测评分和项目预测评分相结合产生最终推荐.论文改进的算法不仅解决了冷启动问题,而且也缓解了数据稀疏性. (2)提出利用遗传算法解决改进的算法中选取最佳参数组合问题.在改进的算法中,当选取用户近邻和项目近邻,将用户及项目评分相似度和特征相似度相结合,将用户预测评分和项目预测评分相结合时,都需要选择适当的阈值或权值.遗传算法作为解决组合优化问题的方法之一,可以在推荐算法中得到最佳的参数组合,提高推荐结果准确度. (3)提出利用遗传算法解决对当前推荐场景有影响的用户特征组合问题.当用户的特征因素很多时,并不一定用户的每一特征都会对当前推荐场景造成影响,如何提取出影响当前推荐场景的特征因素是推荐算法的关键问题.利用遗传算法随机生成个体的原理,通过遗传算法的不断迭代与推荐结果评估,能够提取出对当前推荐场景起作用的特征因素. (4)在Movielens数据集上进行实验,实验结果表明论文改进的推荐算法比传统的协同过滤推荐算法的推荐准确度更高,在用户评分数据极端稀疏的情况下,仍能得到较好的推荐效果.
(3)基于注意力机制的规范化矩阵分解推荐算法
近年来,矩阵分解(MF)技术因其有效性和简便性在推荐系统中得到广泛应用.但是,数据稀疏和冷启动问题导致MF学习到的用户特征向量不能准确地代表用户的偏好以及反映用户间的相似关系,影响了模型的性能.为了解决该问题,规范化矩阵分解(RMF)技术引起了研究者的关注.挖掘用户间可靠的相似关系,是RMF需要解决的问题.此外,MF将目标用户特征向量和目标项目特征向量的内积作为目标用户对目标项目的评分,这种简单的线性关系忽略了用户对项目各个属性特征不同的关注度.如何分析用户对项目属性特征的关注度,获取用户更准确的偏好,仍然是一个挑战.针对上述问题,提出了基于注意力机制的规范化矩阵分解模型(ARMF).具体地,为了获取用户间可靠的相似关系解决数据稀疏和冷启动问题,该模型同时依据用户信任网络和评分记录构建用户-项目异构网络,并基于该异构网络挖掘用户间的相似关系;为了进一步提升模型性能,通过在MF中引入注意力机制,分析用户对项目各个属性特征不同的关注度来获取用户更准确的偏好.最后,在两个真实数据集上对比ARMF与现有工作,实验结果证明,ARMF有更好的准确性和健壮性.
(4)基于聚类技术的推荐算法研究
推荐系统是帮助用户评估他没有发现的内容,从而克服信息超载的一种有效工具.对于推荐系统的研究,既有重大的社会意义,又有重大的经济价值.自上世纪九十年代推荐系统作为一个独立的研究问题以来,所进行的相关研究涵盖了数据挖掘,人工智能,人机交互和用户行为学等多个学科领域.针对实际应用中的一些问题,数据挖掘方面研究者们从推荐算法角度给出了众多解决和改进办法.这些工作使得推荐系统已经成功应用于各个商业系统中.虽然个性化推荐技术已经在互联网领域内得到广泛应用,但是仍普遍存在数据稀疏性,算法可扩展性和冷启动等亟待解决的问题.利用聚类分析和复杂网络等方法,本文致力于理解推荐系统各要素,在一定程度上解决推荐系统的现有问题.主要工作如下: 1.提出了一种基于项目聚类的推荐算法.算法的核心目的在于在保留了其它已有基于聚类的推荐算法在解决数据稀疏性优势的基础上,使用聚类分析技术对原始信息进行处理,并通过引入归属度的概念,将真实用户的行为模型转化为兴趣模型从而进行了更精准的推荐.在多个不同类型数据集上进行了多次实验并使用离线仿真的方式对算法的精确性进行评估,结果表明算法在预测精确性上也对原始算法有着较大程度上的提高. 2.提出了一种基于跨电商行为的交叉推荐算法.在分析了现有推荐系统在电子商务应用中的主要任务和面临问题基础上,针对新用户的;冷启动;问题使用用户在多个不同类别电子商务网站访问的交叉行为信息提进行推荐.经过离线仿真,算法可以提供具有相当精确性和个性化的推荐.即使只利用一个站外电商数据进行交叉推荐,其精确度可以远远超过随机推荐,与此同时保持和随机推荐相近的多样性和新颖性.这些都保证算法有着良好的用户体验.随着我们对用户已知信息的不断引入,算法的精确性获得进一步提高.这部分工作为推荐系统的商业应用提供了全新的可供分析的数据对象和全新的研究视角.
(5)协同过滤推荐系统中的冷启动问题研究
随着互联网的普及和电子商务的迅猛发展,人们在享受越来越多信息服务的同时也面临着信息过载问题所带来的困扰。如何在不断膨胀的资源中迅速、准确地找到适合用户的信息,满足用户的个性化需求,逐渐成为众多研究者和网络用户关注的热点问题。个性化推荐系统就是在这样的背景下应运而生。它最大的优势在于能够快捷,准确地定位用户真正需要的信息,缓解信息检索的压力。协同过滤推荐技术是推荐系统中应用最广泛和成功的推荐技术,但随着用户数量的急剧增长,协同过滤推荐算法面临着一些挑战。 冷启动是推荐算法中尚未得到有效解决的一个关键问题。现有协同过滤算法主要通过分析与挖掘评分矩阵,找到与目标用户兴趣相似的最近邻,根据这些最近邻的建议得到推荐。然而系统无法对新用户、新项目进行有效推荐,因为它们缺乏足够的评分信息。由于推荐系统中一般都保存了用户和项目的内容信息,这启发我们结合内容信息对传统的协同过滤算法进行改进。 本文的主要工作如下: (1)提出一个用于解决协同过滤推荐算法冷启动问题的算法框架。该框架首先利用用户-项目评分信息进行聚类、然后利用内容信息和聚类结果建立分类模型,借助分类模型对新用户新项目进行分类,最后结合传统的协同过滤技术产生推荐。所提算法框架克服了新用户新项目由于缺乏评分信息而无法找到相似邻居的不足。通过对算法框架的具体细化可以同时适用于解决新用户和新项目问题。 (2)对所提算法框架进行改进和细化。针对用户评分矩阵非常稀疏,根据原始评分矩阵进行聚类得到的结果不具有代表性的问题,本文在聚类前对原始评分矩阵进行预填充,在填充后的评分矩阵上利用K-means算法进行聚类。而K-means算法中聚类效果受初始点选择影响,对初始点选择进行了优化,选择评分个数较多,所有评分均误差最小的用户或项目作为初始聚类中心点。利用改进后的所提算法分别对新用户和新项目问题进行了有效的解决。 最后,本文通过实验对所提算法进行评估,并与传统的协同过滤算法和现有解决冷启动问题常用算法进行相比较,实验结果证实了本文提出的算法在解决冷启动问题上的可行性、正确性和有效性。