_Mutex_base
using __gnu_cxx::__default_lock_policy;
using __gnu_cxx::_Lock_policy;
using __gnu_cxx::_S_atomic;
using __gnu_cxx::_S_mutex;
using __gnu_cxx::_S_single;
// Empty helper class except when the template argument is _S_mutex.
template <_Lock_policy _Lp>
class _Mutex_base {
protected:
// The atomic policy uses fully-fenced builtins, single doesn't care.
enum { _S_need_barriers = 0 };
};
template <>
class _Mutex_base<_S_mutex> : public __gnu_cxx::__mutex {
protected:
// This policy is used when atomic builtins are not available.
// The replacement atomic operations might not have the necessary
// memory barriers.
enum { _S_need_barriers = 1 };
};
_Lock_policy
相关参见备注2.3.
_Sp_counted_base
template <_Lock_policy _Lp = __default_lock_policy>
class _Sp_counted_base : public _Mutex_base<_Lp> {
public:
_Sp_counted_base() noexcept : _M_use_count(1), _M_weak_count(1) {}
virtual ~_Sp_counted_base() noexcept {}
// Called when _M_use_count drops to zero, to release the resources
// managed by *this.
virtual void _M_dispose() noexcept = 0;
// Called when _M_weak_count drops to zero.
virtual void _M_destroy() noexcept { delete this; }
virtual void* _M_get_deleter(const std::type_info&) noexcept = 0;
void _M_add_ref_copy() { __gnu_cxx::__atomic_add_dispatch(&_M_use_count, 1); }
void _M_add_ref_lock() {
if (!_M_add_ref_lock_nothrow()) __throw_bad_weak_ptr();
}
bool _M_add_ref_lock_nothrow() noexcept;
void _M_release() noexcept {
// Be race-detector-friendly. For more info see bits/c++config.
_GLIBCXX_SYNCHRONIZATION_HAPPENS_BEFORE(&_M_use_count);
if (__gnu_cxx::__exchange_and_add_dispatch(&_M_use_count, -1) == 1) {
_GLIBCXX_SYNCHRONIZATION_HAPPENS_AFTER(&_M_use_count);
_M_dispose();
// There must be a memory barrier between dispose() and destroy()
// to ensure that the effects of dispose() are observed in the
// thread that runs destroy().
// See http://gcc.gnu.org/ml/libstdc++/2005-11/msg00136.html
if (_Mutex_base<_Lp>::_S_need_barriers) {
__atomic_thread_fence(__ATOMIC_ACQ_REL);
}
// Be race-detector-friendly. For more info see bits/c++config.
_GLIBCXX_SYNCHRONIZATION_HAPPENS_BEFORE(&_M_weak_count);
if (__gnu_cxx::__exchange_and_add_dispatch(&_M_weak_count, -1) == 1) {
_GLIBCXX_SYNCHRONIZATION_HAPPENS_AFTER(&_M_weak_count);
_M_destroy();
}
}
}
void _M_weak_add_ref() noexcept { __gnu_cxx::__atomic_add_dispatch(&_M_weak_count, 1); }
void _M_weak_release() noexcept {
// Be race-detector-friendly. For more info see bits/c++config.
_GLIBCXX_SYNCHRONIZATION_HAPPENS_BEFORE(&_M_weak_count);
if (__gnu_cxx::__exchange_and_add_dispatch(&_M_weak_count, -1) == 1) {
_GLIBCXX_SYNCHRONIZATION_HAPPENS_AFTER(&_M_weak_count);
if (_Mutex_base<_Lp>::_S_need_barriers) {
// See _M_release(),
// destroy() must observe results of dispose()
__atomic_thread_fence(__ATOMIC_ACQ_REL);
}
_M_destroy();
}
}
long _M_get_use_count() const noexcept {
// No memory barrier is used here so there is no synchronization
// with other threads.
return __atomic_load_n(&_M_use_count, __ATOMIC_RELAXED);
}
private:
_Sp_counted_base(_Sp_counted_base const&) = delete;
_Sp_counted_base& operator=(_Sp_counted_base const&) = delete;
_Atomic_word _M_use_count; // #shared
_Atomic_word _M_weak_count; // #weak + (#shared != 0)
};
template <>
inline bool _Sp_counted_base<_S_single>::_M_add_ref_lock_nothrow() noexcept {
if (_M_use_count == 0) return false;
++_M_use_count;
return true;
}
template <>
inline bool _Sp_counted_base<_S_mutex>::_M_add_ref_lock_nothrow() noexcept {
__gnu_cxx::__scoped_lock sentry(*this);
if (__gnu_cxx::__exchange_and_add_dispatch(&_M_use_count, 1) == 0) {
_M_use_count = 0;
return false;
}
return true;
}
template <>
inline bool _Sp_counted_base<_S_atomic>::_M_add_ref_lock_nothrow() noexcept {
// Perform lock-free add-if-not-zero operation.
_Atomic_word __count = _M_get_use_count();
do {
if (__count == 0) return false;
// Replace the current counter value with the old value + 1, as
// long as it's not changed meanwhile.
} while (!__atomic_compare_exchange_n(&_M_use_count, &__count, __count + 1, true, __ATOMIC_ACQ_REL,
__ATOMIC_RELAXED));
return true;
}
template <>
inline void _Sp_counted_base<_S_single>::_M_add_ref_copy() {
++_M_use_count;
}
template <>
inline void _Sp_counted_base<_S_single>::_M_release() noexcept {
if (--_M_use_count == 0) {
_M_dispose();
if (--_M_weak_count == 0) _M_destroy();
}
}
template <>
inline void _Sp_counted_base<_S_single>::_M_weak_add_ref() noexcept {
++_M_weak_count;
}
template <>
inline void _Sp_counted_base<_S_single>::_M_weak_release() noexcept {
if (--_M_weak_count == 0) _M_destroy();
}
template <>
inline long _Sp_counted_base<_S_single>::_M_get_use_count() const noexcept {
return _M_use_count;
}
__exchange_and_add_dispatch
函数参见备注2.2._M_use_count
、_M_weak_count
初始化为1.这里的逻辑是,当它创建的时候,自己本身就是一个引用计数。_M_dispose
函数是纯虚函数,当_M_use_count
为0时,释放this持有的资源。_M_destroy
函数默认删除this,当_M_weak_count
为0时调用。_M_add_ref_copy
函数,对_M_use_count + 1
,是原子操作。_M_add_ref_lock
函数,主要逻辑仍然是_M_use_count + 1
。和_M_add_ref_copy
的区别是对不同_Lock_policy
有不同的实现,包含直接加、原子操作加、加锁。_M_release
函数,当_M_use_count-1=0
时,即_M_use_count
为0时,调用_M_dispose
。并当_M_use_count-1=0
,即_M_weak_count
为0时,调用_M_destroy
。_M_weak_add_ref
:对_M_weak_count + 1
,是原子操作。_M_weak_release
:只对_M_weak_count - 1
。_Lock_policy=_M_single
时的重载形式。_Sp_counted_ptr
// Counted ptr with no deleter or allocator support
template <typename _Ptr, _Lock_policy _Lp>
class _Sp_counted_ptr final : public _Sp_counted_base<_Lp> {
public:
explicit _Sp_counted_ptr(_Ptr __p) noexcept : _M_ptr(__p) {}
virtual void _M_dispose() noexcept { delete _M_ptr; }
virtual void _M_destroy() noexcept { delete this; }
virtual void* _M_get_deleter(const std::type_info&) noexcept { return nullptr; }
_Sp_counted_ptr(const _Sp_counted_ptr&) = delete;
_Sp_counted_ptr& operator=(const _Sp_counted_ptr&) = delete;
private:
_Ptr _M_ptr;
};
template <>
inline void _Sp_counted_ptr<nullptr_t, _S_single>::_M_dispose() noexcept {}
template <>
inline void _Sp_counted_ptr<nullptr_t, _S_mutex>::_M_dispose() noexcept {}
template <>
inline void _Sp_counted_ptr<nullptr_t, _S_atomic>::_M_dispose() noexcept {}
不支持deleter和allocator的counted ptr。
_M_dispose
默认行为是delete _M_ptr
,_M_destroy
默认行为是delete this。_Ptr=nullptr_t
时,不同_Lock_policy
的_M_dispose
的行为都是空的。_Sp_ebo_helper
template <int _Nm, typename _Tp, bool __use_ebo = !__is_final(_Tp) && __is_empty(_Tp)>
struct _Sp_ebo_helper;
/// Specialization using EBO.
template <int _Nm, typename _Tp>
struct _Sp_ebo_helper<_Nm, _Tp, true> : private _Tp {
explicit _Sp_ebo_helper(const _Tp& __tp) : _Tp(__tp) {}
explicit _Sp_ebo_helper(_Tp&& __tp) : _Tp(std::move(__tp)) {}
static _Tp& _S_get(_Sp_ebo_helper& __eboh) { return static_cast<_Tp&>(__eboh); }
};
/// Specialization not using EBO.
template <int _Nm, typename _Tp>
struct _Sp_ebo_helper<_Nm, _Tp, false> {
explicit _Sp_ebo_helper(const _Tp& __tp) : _M_tp(__tp) {}
explicit _Sp_ebo_helper(_Tp&& __tp) : _M_tp(std::move(__tp)) {}
static _Tp& _S_get(_Sp_ebo_helper& __eboh) { return __eboh._M_tp; }
private:
_Tp _M_tp;
};
在类型_Tp
为final且empty的时候,使用ebo优化的类,即模板参数__use_ebo
为true的时候。
_S_get
返回强转为_Tp
类型的入参_Sp_ebo_helper
。_Tp
类型的私有变量:_M_tp
。_S_get
返回这个变量。_Sp_counted_deleter
// Support for custom deleter and/or allocator
template <typename _Ptr, typename _Deleter, typename _Alloc, _Lock_policy _Lp>
class _Sp_counted_deleter final : public _Sp_counted_base<_Lp> {
class _Impl : _Sp_ebo_helper<0, _Deleter>, _Sp_ebo_helper<1, _Alloc> {
typedef _Sp_ebo_helper<0, _Deleter> _Del_base;
typedef _Sp_ebo_helper<1, _Alloc> _Alloc_base;
public:
_Impl(_Ptr __p, _Deleter __d, const _Alloc& __a) noexcept
: _Del_base(std::move(__d)), _Alloc_base(__a), _M_ptr(__p) {}
_Deleter& _M_del() noexcept { return _Del_base::_S_get(*this); }
_Alloc& _M_alloc() noexcept { return _Alloc_base::_S_get(*this); }
_Ptr _M_ptr;
};
public:
using __allocator_type = __alloc_rebind<_Alloc, _Sp_counted_deleter>;
// __d(__p) must not throw.
_Sp_counted_deleter(_Ptr __p, _Deleter __d) noexcept : _M_impl(__p, std::move(__d), _Alloc()) {}
// __d(__p) must not throw.
_Sp_counted_deleter(_Ptr __p, _Deleter __d, const _Alloc& __a) noexcept : _M_impl(__p, std::move(__d), __a) {}
~_Sp_counted_deleter() noexcept {}
virtual void _M_dispose() noexcept { _M_impl._M_del()(_M_impl._M_ptr); }
virtual void _M_destroy() noexcept {
__allocator_type __a(_M_impl._M_alloc());
__allocated_ptr<__allocator_type> __guard_ptr{__a, this};
this->~_Sp_counted_deleter();
}
virtual void* _M_get_deleter(const type_info& __ti [[__gnu__::__unused__]]) noexcept {
#if __cpp_rtti
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// 2400. shared_ptr's get_deleter() should use addressof()
return __ti == typeid(_Deleter) ? std::__addressof(_M_impl._M_del()) : nullptr;
#else
return nullptr;
#endif
}
private:
_Impl _M_impl;
};
_Impl
继承自_Sp_ebo_helper<0, _Deleter>
作为_Del_base
、_Sp_ebo_helper<1, _Alloc>
作为_Alloc_base
。
_M_ptr
作为私有变量是被管理的对象的指针。_M_del
从_Del_base
获取一个_Deleter
变量。_M_alloc
从_Alloc_base
获取一个_Alloc
类型变量。_Sp_counted_deleter
继承自_Sp_counted_base
。
_Impl
类型的。_Impl
。_M_dispose
函数对_Ptr
调用_M_del()
。_M_destroy
函数对this调用析构函数。_M_get_delter
,当传入的type_info
类型的__ti
和_Deleter
是同样的类型的时候,返回_M_del()
的地址,否则返回nullptr。_Sp_counted_ptr_inplace
struct _Sp_make_shared_tag {
private:
template <typename _Tp, typename _Alloc, _Lock_policy _Lp>
friend class _Sp_counted_ptr_inplace;
static const type_info& _S_ti() noexcept _GLIBCXX_VISIBILITY(default) {
alignas(type_info) static constexpr char __tag[sizeof(type_info)] = {};
return reinterpret_cast<const type_info&>(__tag);
}
static bool _S_eq(const type_info&) noexcept;
};
template <typename _Alloc>
struct _Sp_alloc_shared_tag {
const _Alloc& _M_a;
};
template <typename _Tp, typename _Alloc, _Lock_policy _Lp>
class _Sp_counted_ptr_inplace final : public _Sp_counted_base<_Lp> {
class _Impl : _Sp_ebo_helper<0, _Alloc> {
typedef _Sp_ebo_helper<0, _Alloc> _A_base;
public:
explicit _Impl(_Alloc __a) noexcept : _A_base(__a) {}
_Alloc& _M_alloc() noexcept { return _A_base::_S_get(*this); }
__gnu_cxx::__aligned_buffer<_Tp> _M_storage;
};
public:
using __allocator_type = __alloc_rebind<_Alloc, _Sp_counted_ptr_inplace>;
// Alloc parameter is not a reference so doesn't alias anything in __args
template <typename... _Args>
_Sp_counted_ptr_inplace(_Alloc __a, _Args&&... __args) : _M_impl(__a) {
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// 2070. allocate_shared should use allocator_traits::construct
allocator_traits<_Alloc>::construct(__a, _M_ptr(),
std::forward<_Args>(__args)...); // might throw
}
~_Sp_counted_ptr_inplace() noexcept {}
virtual void _M_dispose() noexcept { allocator_traits<_Alloc>::destroy(_M_impl._M_alloc(), _M_ptr()); }
// Override because the allocator needs to know the dynamic type
virtual void _M_destroy() noexcept {
__allocator_type __a(_M_impl._M_alloc());
__allocated_ptr<__allocator_type> __guard_ptr{__a, this};
this->~_Sp_counted_ptr_inplace();
}
private:
friend class __shared_count<_Lp>; // To be able to call _M_ptr().
// No longer used, but code compiled against old libstdc++ headers
// might still call it from __shared_ptr ctor to get the pointer out.
virtual void* _M_get_deleter(const std::type_info& __ti) noexcept override {
auto __ptr = const_cast<typename remove_cv<_Tp>::type*>(_M_ptr());
// Check for the fake type_info first, so we don't try to access it
// as a real type_info object. Otherwise, check if it's the real
// type_info for this class. With RTTI enabled we can check directly,
// or call a library function to do it.
if (&__ti == &_Sp_make_shared_tag::_S_ti() ||
#if __cpp_rtti
__ti == typeid(_Sp_make_shared_tag)
#else
_Sp_make_shared_tag::_S_eq(__ti)
#endif
)
return __ptr;
return nullptr;
}
_Tp* _M_ptr() noexcept { return _M_impl._M_storage._M_ptr(); }
_Impl _M_impl;
};
这里的“inplace”指的是inplace构造,看到_Impl
类中为一个成员变量_M_storage
,并且_Sp_counted_ptr_inplace
唯一的变量_M_impl
。构造函数就是利用传入的allocator和参数在_M_storage
上构建对象。_M_dispose
函数就是删除_M_storage
上的对象。
_shared_count
// The default deleter for shared_ptr and shared_ptr.
struct __sp_array_delete {
template <typename _Yp>
void operator()(_Yp* __p) const {
delete[] __p;
}
};
template <_Lock_policy _Lp>
class __shared_count {
template <typename _Tp>
struct __not_alloc_shared_tag {
using type = void;
};
template <typename _Tp>
struct __not_alloc_shared_tag<_Sp_alloc_shared_tag<_Tp>> {};
public:
constexpr __shared_count() noexcept : _M_pi(0) {}
// 构造函数1,最基础的
template <typename _Ptr>
explicit __shared_count(_Ptr __p) : _M_pi(0) {
__try {
_M_pi = new _Sp_counted_ptr<_Ptr, _Lp>(__p);
}
__catch(...) {
delete __p;
__throw_exception_again;
}
}
template <typename _Ptr>
__shared_count(_Ptr __p, /* is_array = */ false_type) : __shared_count(__p) {}
template <typename _Ptr>
__shared_count(_Ptr __p, /* is_array = */ true_type)
: __shared_count(__p, __sp_array_delete{}, allocator<void>()) {}
template <typename _Ptr, typename _Deleter, typename = typename __not_alloc_shared_tag<_Deleter>::type>
__shared_count(_Ptr __p, _Deleter __d) : __shared_count(__p, std::move(__d), allocator<void>()) {}
// 构造函数2,带有delter和alloctor的
template <typename _Ptr, typename _Deleter, typename _Alloc,
typename = typename __not_alloc_shared_tag<_Deleter>::type>
__shared_count(_Ptr __p, _Deleter __d, _Alloc __a) : _M_pi(0) {
typedef _Sp_counted_deleter<_Ptr, _Deleter, _Alloc, _Lp> _Sp_cd_type;
__try {
typename _Sp_cd_type::__allocator_type __a2(__a);
auto __guard = std::__allocate_guarded(__a2);
_Sp_cd_type* __mem = __guard.get();
::new (__mem) _Sp_cd_type(__p, std::move(__d), std::move(__a));
_M_pi = __mem;
__guard = nullptr;
}
__catch(...) {
__d(__p); // Call _Deleter on __p.
__throw_exception_again;
}
}
template <typename _Tp, typename _Alloc, typename... _Args>
__shared_count(_Tp*& __p, _Sp_alloc_shared_tag<_Alloc> __a, _Args&&... __args) {
typedef _Sp_counted_ptr_inplace<_Tp, _Alloc, _Lp> _Sp_cp_type;
typename _Sp_cp_type::__allocator_type __a2(__a._M_a);
auto __guard = std::__allocate_guarded(__a2);
_Sp_cp_type* __mem = __guard.get();
auto __pi = ::new (__mem) _Sp_cp_type(__a._M_a, std::forward<_Args>(__args)...);
__guard = nullptr;
_M_pi = __pi;
__p = __pi->_M_ptr();
}
// Special case for unique_ptr<_Tp,_Del> to provide the strong guarantee.
template <typename _Tp, typename _Del>
explicit __shared_count(std::unique_ptr<_Tp, _Del>&& __r) : _M_pi(0) {
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// 2415. Inconsistency between unique_ptr and shared_ptr
if (__r.get() == nullptr) return;
using _Ptr = typename unique_ptr<_Tp, _Del>::pointer;
using _Del2 = typename conditional<is_reference<_Del>::value,
reference_wrapper<typename remove_reference<_Del>::type>, _Del>::type;
using _Sp_cd_type = _Sp_counted_deleter<_Ptr, _Del2, allocator<void>, _Lp>;
using _Alloc = allocator<_Sp_cd_type>;
using _Alloc_traits = allocator_traits<_Alloc>;
_Alloc __a;
_Sp_cd_type* __mem = _Alloc_traits::allocate(__a, 1);
_Alloc_traits::construct(__a, __mem, __r.release(),
__r.get_deleter()); // non-throwing
_M_pi = __mem;
}
// Throw bad_weak_ptr when __r._M_get_use_count() == 0.
explicit __shared_count(const __weak_count<_Lp>& __r);
// Does not throw if __r._M_get_use_count() == 0, caller must check.
explicit __shared_count(const __weak_count<_Lp>& __r, std::nothrow_t) noexcept;
~__shared_count() noexcept {
if (_M_pi != nullptr) _M_pi->_M_release();
}
__shared_count(const __shared_count& __r) noexcept : _M_pi(__r._M_pi) {
if (_M_pi != nullptr) _M_pi->_M_add_ref_copy();
}
__shared_count& operator=(const __shared_count& __r) noexcept {
_Sp_counted_base<_Lp>* __tmp = __r._M_pi;
if (__tmp != _M_pi) {
if (__tmp != nullptr) __tmp->_M_add_ref_copy();
if (_M_pi != nullptr) _M_pi->_M_release();
_M_pi = __tmp;
}
return *this;
}
void _M_swap(__shared_count& __r) noexcept {
_Sp_counted_base<_Lp>* __tmp = __r._M_pi;
__r._M_pi = _M_pi;
_M_pi = __tmp;
}
long _M_get_use_count() const noexcept { return _M_pi ? _M_pi->_M_get_use_count() : 0; }
bool _M_unique() const noexcept { return this->_M_get_use_count() == 1; }
void* _M_get_deleter(const std::type_info& __ti) const noexcept {
return _M_pi ? _M_pi->_M_get_deleter(__ti) : nullptr;
}
bool _M_less(const __shared_count& __rhs) const noexcept {
return std::less<_Sp_counted_base<_Lp>*>()(this->_M_pi, __rhs._M_pi);
}
bool _M_less(const __weak_count<_Lp>& __rhs) const noexcept {
return std::less<_Sp_counted_base<_Lp>*>()(this->_M_pi, __rhs._M_pi);
}
// Friend function injected into enclosing namespace and found by ADL
friend inline bool operator==(const __shared_count& __a, const __shared_count& __b) noexcept {
return __a._M_pi == __b._M_pi;
}
private:
friend class __weak_count<_Lp>;
_Sp_counted_base<_Lp>* _M_pi;
};
// Now that __weak_count is defined we can define this constructor:
template <_Lock_policy _Lp>
inline __shared_count<_Lp>::__shared_count(const __weak_count<_Lp>& __r) : _M_pi(__r._M_pi) {
if (_M_pi == nullptr || !_M_pi->_M_add_ref_lock_nothrow()) __throw_bad_weak_ptr();
}
// Now that __weak_count is defined we can define this constructor:
template <_Lock_policy _Lp>
inline __shared_count<_Lp>::__shared_count(const __weak_count<_Lp>& __r, std::nothrow_t) noexcept
: _M_pi(__r._M_pi) {
if (_M_pi && !_M_pi->_M_add_ref_lock_nothrow()) _M_pi = nullptr;
}
唯一的私有变量是_Sp_counted_base<_Lp>* _M_pi;
,后面会看到这个变量会通过构造函数的入参不同而动态绑定到不同的类型上。
最基础的构造函数1,传入一个_Ptr
类型的__p
,用他来构造一个_Sp_counted_ptr
对象,将_M_pi
指向它。
构造函数2(入参中含有deleter和allocator的):用传入的参数构造一个_Sp_counted_deleter
对象,将_M_pi
指向它。
对于指向array的构造函数、传入了deleter的构造函数,都是调用的构造函数2.
对于传入了_Sp_counted_ptr_inplace
的构造函数,用传入的参数构造一个_Sp_counted_ptr_inplace
对象,将_M_pi
指向它。
对于传入了unique_ptr
的构造函数,逻辑没有很特别的地方,类似上面。
拷贝构造函数:this->_M_pi = __r._M_pi
,并增加一个ref。
拷贝赋值函数:__r._M_pi
增加一个ref,this->_M_pi
释放,并this->_M_pi = __r._M_pi
。
_M_less
函数:对两个指针比较了大小。这确实是可以比较的,见备注2.4.
参数为__weak_count
的拷贝构造函数:this->_M_pi = __r._M_pi
,并加一个ref。(__weak_count
定义见下)
__weak_count
template <_Lock_policy _Lp>
class __weak_count {
public:
constexpr __weak_count() noexcept : _M_pi(nullptr) {}
__weak_count(const __shared_count<_Lp>& __r) noexcept : _M_pi(__r._M_pi) {
if (_M_pi != nullptr) _M_pi->_M_weak_add_ref();
}
__weak_count(const __weak_count& __r) noexcept : _M_pi(__r._M_pi) {
if (_M_pi != nullptr) _M_pi->_M_weak_add_ref();
}
__weak_count(__weak_count&& __r) noexcept : _M_pi(__r._M_pi) { __r._M_pi = nullptr; }
~__weak_count() noexcept {
if (_M_pi != nullptr) _M_pi->_M_weak_release();
}
__weak_count& operator=(const __shared_count<_Lp>& __r) noexcept {
_Sp_counted_base<_Lp>* __tmp = __r._M_pi;
if (__tmp != nullptr) __tmp->_M_weak_add_ref();
if (_M_pi != nullptr) _M_pi->_M_weak_release();
_M_pi = __tmp;
return *this;
}
__weak_count& operator=(const __weak_count& __r) noexcept {
_Sp_counted_base<_Lp>* __tmp = __r._M_pi;
if (__tmp != nullptr) __tmp->_M_weak_add_ref();
if (_M_pi != nullptr) _M_pi->_M_weak_release();
_M_pi = __tmp;
return *this;
}
__weak_count& operator=(__weak_count&& __r) noexcept {
if (_M_pi != nullptr) _M_pi->_M_weak_release();
_M_pi = __r._M_pi;
__r._M_pi = nullptr;
return *this;
}
void _M_swap(__weak_count& __r) noexcept {
_Sp_counted_base<_Lp>* __tmp = __r._M_pi;
__r._M_pi = _M_pi;
_M_pi = __tmp;
}
long _M_get_use_count() const noexcept { return _M_pi != nullptr ? _M_pi->_M_get_use_count() : 0; }
bool _M_less(const __weak_count& __rhs) const noexcept {
return std::less<_Sp_counted_base<_Lp>*>()(this->_M_pi, __rhs._M_pi);
}
bool _M_less(const __shared_count<_Lp>& __rhs) const noexcept {
return std::less<_Sp_counted_base<_Lp>*>()(this->_M_pi, __rhs._M_pi);
}
// Friend function injected into enclosing namespace and found by ADL
friend inline bool operator==(const __weak_count& __a, const __weak_count& __b) noexcept {
return __a._M_pi == __b._M_pi;
}
private:
friend class __shared_count<_Lp>;
_Sp_counted_base<_Lp>* _M_pi;
};
this->_M_pi = __r._M_pi
,并加一个weak ref。__shared_count
的拷贝构造函数:逻辑与上相同。this->_M_pi = __r._M_pi
,再将__r._M_pi
置为nullptr。__r._M_pi
加一个weak ref,this->_M_pi
释放,并将this->_M_pi = __r._M_pi
。__shared_count
拷贝复制函数:逻辑与上相同。this->_M_pi
释放,this->_M_pi = __r._M_pi
,并将__r._M_pi
置为nullptr。_M_less
函数,调用std::less
比较两个类的_M_pi
。__shared_count
和__weak_count
小结:各类构造时的一些计数问题__shared_ptr_access
template <typename _Tp, _Lock_policy _Lp, bool = is_array<_Tp>::value, bool = is_void<_Tp>::value>
class __shared_ptr_access {
public:
using element_type = _Tp;
element_type& operator*() const noexcept {
__glibcxx_assert(_M_get() != nullptr);
return *_M_get();
}
element_type* operator->() const noexcept {
_GLIBCXX_DEBUG_PEDASSERT(_M_get() != nullptr);
return _M_get();
}
private:
element_type* _M_get() const noexcept { return static_cast<const __shared_ptr<_Tp, _Lp>*>(this)->get(); }
};
// Define operator-> for shared_ptr.
template <typename _Tp, _Lock_policy _Lp>
class __shared_ptr_access<_Tp, _Lp, false, true> {
public:
using element_type = _Tp;
element_type* operator->() const noexcept {
auto __ptr = static_cast<const __shared_ptr<_Tp, _Lp>*>(this)->get();
_GLIBCXX_DEBUG_PEDASSERT(__ptr != nullptr);
return __ptr;
}
};
// Define operator[] for shared_ptr and shared_ptr.
template <typename _Tp, _Lock_policy _Lp>
class __shared_ptr_access<_Tp, _Lp, true, false> {
public:
using element_type = typename remove_extent<_Tp>::type;
#if __cplusplus <= 201402L
[[__deprecated__("shared_ptr::operator* is absent from C++17" )]] element_type& operator*() const noexcept {
__glibcxx_assert(_M_get() != nullptr);
return *_M_get();
}
[[__deprecated__("shared_ptr::operator-> is absent from C++17" )]] element_type* operator->()
const noexcept {
_GLIBCXX_DEBUG_PEDASSERT(_M_get() != nullptr);
return _M_get();
}
#endif
element_type& operator[](ptrdiff_t __i) const {
__glibcxx_assert(_M_get() != nullptr);
__glibcxx_assert(!extent<_Tp>::value || __i < extent<_Tp>::value);
return _M_get()[__i];
}
private:
element_type* _M_get() const noexcept { return static_cast<const __shared_ptr<_Tp, _Lp>*>(this)->get(); }
};
这个类__shared_ptr_access
没有太多的内容,主要是提供了对后面__shared_ptr
的operator*
和operator->
的实现。
__shared_ptr
template <typename _Tp, _Lock_policy _Lp>
class __shared_ptr : public __shared_ptr_access<_Tp, _Lp> {
public:
using element_type = typename remove_extent<_Tp>::type;
private:
// Constraint for taking ownership of a pointer of type _Yp*:
template <typename _Yp>
using _SafeConv = typename enable_if<__sp_is_constructible<_Tp, _Yp>::value>::type;
// Constraint for construction from shared_ptr and weak_ptr:
template <typename _Yp, typename _Res = void>
using _Compatible = typename enable_if<__sp_compatible_with<_Yp*, _Tp*>::value, _Res>::type;
// Constraint for assignment from shared_ptr and weak_ptr:
template <typename _Yp>
using _Assignable = _Compatible<_Yp, __shared_ptr&>;
// Constraint for construction from unique_ptr:
template <typename _Yp, typename _Del, typename _Res = void,
typename _Ptr = typename unique_ptr<_Yp, _Del>::pointer>
using _UniqCompatible =
typename enable_if<__and_<__sp_compatible_with<_Yp*, _Tp*>, is_convertible<_Ptr, element_type*>>::value,
_Res>::type;
// Constraint for assignment from unique_ptr:
template <typename _Yp, typename _Del>
using _UniqAssignable = _UniqCompatible<_Yp, _Del, __shared_ptr&>;
public:
#if __cplusplus > 201402L
using weak_type = __weak_ptr<_Tp, _Lp>;
#endif
constexpr __shared_ptr() noexcept : _M_ptr(0), _M_refcount() {}
template <typename _Yp, typename = _SafeConv<_Yp>>
explicit __shared_ptr(_Yp* __p) : _M_ptr(__p), _M_refcount(__p, typename is_array<_Tp>::type()) {
static_assert(!is_void<_Yp>::value, "incomplete type");
static_assert(sizeof(_Yp) > 0, "incomplete type");
_M_enable_shared_from_this_with(__p);
}
template <typename _Yp, typename _Deleter, typename = _SafeConv<_Yp>>
__shared_ptr(_Yp* __p, _Deleter __d) : _M_ptr(__p), _M_refcount(__p, std::move(__d)) {
static_assert(__is_invocable<_Deleter&, _Yp*&>::value, "deleter expression d(p) is well-formed");
_M_enable_shared_from_this_with(__p);
}
template <typename _Yp, typename _Deleter, typename _Alloc, typename = _SafeConv<_Yp>>
__shared_ptr(_Yp* __p, _Deleter __d, _Alloc __a)
: _M_ptr(__p), _M_refcount(__p, std::move(__d), std::move(__a)) {
static_assert(__is_invocable<_Deleter&, _Yp*&>::value, "deleter expression d(p) is well-formed");
_M_enable_shared_from_this_with(__p);
}
template <typename _Deleter>
__shared_ptr(nullptr_t __p, _Deleter __d) : _M_ptr(0), _M_refcount(__p, std::move(__d)) {}
template <typename _Deleter, typename _Alloc>
__shared_ptr(nullptr_t __p, _Deleter __d, _Alloc __a)
: _M_ptr(0), _M_refcount(__p, std::move(__d), std::move(__a)) {}
// Aliasing constructor
template <typename _Yp>
__shared_ptr(const __shared_ptr<_Yp, _Lp>& __r, element_type* __p) noexcept
: _M_ptr(__p),
_M_refcount(__r._M_refcount) // never throws
{}
// Aliasing constructor
template <typename _Yp>
__shared_ptr(__shared_ptr<_Yp, _Lp>&& __r, element_type* __p) noexcept : _M_ptr(__p), _M_refcount() {
_M_refcount._M_swap(__r._M_refcount);
__r._M_ptr = nullptr;
}
__shared_ptr(const __shared_ptr&) noexcept = default;
__shared_ptr& operator=(const __shared_ptr&) noexcept = default;
~__shared_ptr() = default;
template <typename _Yp, typename = _Compatible<_Yp>>
__shared_ptr(const __shared_ptr<_Yp, _Lp>& __r) noexcept : _M_ptr(__r._M_ptr), _M_refcount(__r._M_refcount) {}
__shared_ptr(__shared_ptr&& __r) noexcept : _M_ptr(__r._M_ptr), _M_refcount() {
_M_refcount._M_swap(__r._M_refcount);
__r._M_ptr = nullptr;
}
template <typename _Yp, typename = _Compatible<_Yp>>
__shared_ptr(__shared_ptr<_Yp, _Lp>&& __r) noexcept : _M_ptr(__r._M_ptr), _M_refcount() {
_M_refcount._M_swap(__r._M_refcount);
__r._M_ptr = nullptr;
}
template <typename _Yp, typename = _Compatible<_Yp>>
explicit __shared_ptr(const __weak_ptr<_Yp, _Lp>& __r)
: _M_refcount(__r._M_refcount) // may throw
{
// It is now safe to copy __r._M_ptr, as
// _M_refcount(__r._M_refcount) did not throw.
_M_ptr = __r._M_ptr;
}
// If an exception is thrown this constructor has no effect.
template <typename _Yp, typename _Del, typename = _UniqCompatible<_Yp, _Del>>
__shared_ptr(unique_ptr<_Yp, _Del>&& __r) : _M_ptr(__r.get()), _M_refcount() {
auto __raw = __to_address(__r.get());
_M_refcount = __shared_count<_Lp>(std::move(__r));
_M_enable_shared_from_this_with(__raw);
}
#if __cplusplus <= 201402L && _GLIBCXX_USE_DEPRECATED
protected:
// If an exception is thrown this constructor has no effect.
template <typename _Tp1, typename _Del,
typename enable_if<__and_<__not_<is_array<_Tp>>, is_array<_Tp1>,
is_convertible<typename unique_ptr<_Tp1, _Del>::pointer, _Tp*>>::value,
bool>::type = true>
__shared_ptr(unique_ptr<_Tp1, _Del>&& __r, __sp_array_delete) : _M_ptr(__r.get()), _M_refcount() {
auto __raw = __to_address(__r.get());
_M_refcount = __shared_count<_Lp>(std::move(__r));
_M_enable_shared_from_this_with(__raw);
}
public:
#endif
constexpr __shared_ptr(nullptr_t) noexcept : __shared_ptr() {}
template <typename _Yp>
_Assignable<_Yp> operator=(const __shared_ptr<_Yp, _Lp>& __r) noexcept {
_M_ptr = __r._M_ptr;
_M_refcount = __r._M_refcount; // __shared_count::op= doesn't throw
return *this;
}
__shared_ptr& operator=(__shared_ptr&& __r) noexcept {
__shared_ptr(std::move(__r)).swap(*this);
return *this;
}
template <class _Yp>
_Assignable<_Yp> operator=(__shared_ptr<_Yp, _Lp>&& __r) noexcept {
__shared_ptr(std::move(__r)).swap(*this);
return *this;
}
template <typename _Yp, typename _Del>
_UniqAssignable<_Yp, _Del> operator=(unique_ptr<_Yp, _Del>&& __r) {
__shared_ptr(std::move(__r)).swap(*this);
return *this;
}
void reset() noexcept { __shared_ptr().swap(*this); }
template <typename _Yp>
_SafeConv<_Yp> reset(_Yp* __p) // _Yp must be complete.
{
// Catch self-reset errors.
__glibcxx_assert(__p == nullptr || __p != _M_ptr);
__shared_ptr(__p).swap(*this);
}
template <typename _Yp, typename _Deleter>
_SafeConv<_Yp> reset(_Yp* __p, _Deleter __d) {
__shared_ptr(__p, std::move(__d)).swap(*this);
}
template <typename _Yp, typename _Deleter, typename _Alloc>
_SafeConv<_Yp> reset(_Yp* __p, _Deleter __d, _Alloc __a) {
__shared_ptr(__p, std::move(__d), std::move(__a)).swap(*this);
}
/// Return the stored pointer.
element_type* get() const noexcept { return _M_ptr; }
/// Return true if the stored pointer is not null.
explicit operator bool() const noexcept { return _M_ptr != nullptr; }
/// Return true if use_count() == 1.
bool unique() const noexcept { return _M_refcount._M_unique(); }
/// If *this owns a pointer, return the number of owners, otherwise zero.
long use_count() const noexcept { return _M_refcount._M_get_use_count(); }
/// Exchange both the owned pointer and the stored pointer.
void swap(__shared_ptr<_Tp, _Lp>& __other) noexcept {
std::swap(_M_ptr, __other._M_ptr);
_M_refcount._M_swap(__other._M_refcount);
}
/** @brief Define an ordering based on ownership.
*
* This function defines a strict weak ordering between two shared_ptr
* or weak_ptr objects, such that one object is less than the other
* unless they share ownership of the same pointer, or are both empty.
* @{
*/
template <typename _Tp1>
bool owner_before(__shared_ptr<_Tp1, _Lp> const& __rhs) const noexcept {
return _M_refcount._M_less(__rhs._M_refcount);
}
template <typename _Tp1>
bool owner_before(__weak_ptr<_Tp1, _Lp> const& __rhs) const noexcept {
return _M_refcount._M_less(__rhs._M_refcount);
}
/// @}
protected:
// This constructor is non-standard, it is used by allocate_shared.
template <typename _Alloc, typename... _Args>
__shared_ptr(_Sp_alloc_shared_tag<_Alloc> __tag, _Args&&... __args)
: _M_ptr(), _M_refcount(_M_ptr, __tag, std::forward<_Args>(__args)...) {
_M_enable_shared_from_this_with(_M_ptr);
}
template <typename _Tp1, _Lock_policy _Lp1, typename _Alloc, typename... _Args>
friend __shared_ptr<_Tp1, _Lp1> __allocate_shared(const _Alloc& __a, _Args&&... __args);
// This constructor is used by __weak_ptr::lock() and
// shared_ptr::shared_ptr(const weak_ptr&, std::nothrow_t).
__shared_ptr(const __weak_ptr<_Tp, _Lp>& __r, std::nothrow_t) noexcept
: _M_refcount(__r._M_refcount, std::nothrow) {
_M_ptr = _M_refcount._M_get_use_count() ? __r._M_ptr : nullptr;
}
friend class __weak_ptr<_Tp, _Lp>;
private:
template <typename _Yp>
using __esft_base_t =
decltype(__enable_shared_from_this_base(std::declval<const __shared_count<_Lp>&>(), std::declval<_Yp*>()));
// Detect an accessible and unambiguous enable_shared_from_this base.
template <typename _Yp, typename = void>
struct __has_esft_base : false_type {};
template <typename _Yp>
struct __has_esft_base<_Yp, __void_t<__esft_base_t<_Yp>>> : __not_<is_array<_Tp>> {
}; // No enable shared_from_this for arrays
template <typename _Yp, typename _Yp2 = typename remove_cv<_Yp>::type>
typename enable_if<__has_esft_base<_Yp2>::value>::type _M_enable_shared_from_this_with(_Yp* __p) noexcept {
if (auto __base = __enable_shared_from_this_base(_M_refcount, __p))
__base->_M_weak_assign(const_cast<_Yp2*>(__p), _M_refcount);
}
template <typename _Yp, typename _Yp2 = typename remove_cv<_Yp>::type>
typename enable_if<!__has_esft_base<_Yp2>::value>::type _M_enable_shared_from_this_with(_Yp*) noexcept {}
void* _M_get_deleter(const std::type_info& __ti) const noexcept { return _M_refcount._M_get_deleter(__ti); }
template <typename _Tp1, _Lock_policy _Lp1>
friend class __shared_ptr;
template <typename _Tp1, _Lock_policy _Lp1>
friend class __weak_ptr;
template <typename _Del, typename _Tp1, _Lock_policy _Lp1>
friend _Del* get_deleter(const __shared_ptr<_Tp1, _Lp1>&) noexcept;
template <typename _Del, typename _Tp1>
friend _Del* get_deleter(const shared_ptr<_Tp1>&) noexcept;
element_type* _M_ptr; // Contained pointer.
__shared_count<_Lp> _M_refcount; // Reference counter.
};
两个成员变量:_M_ptr
指向实际的数据,_M_refcount
是它的引用计数。
_Yp* __p
,直接将赋值给_M_ptr
,并用其构造一个_M_refcount
。并对齐调用_M_enable_shared_from_this_with
。__r._M_ptr
和__r._M_refcount
直接初始化this的_M_ptr
、_M_refcount
。__r._M_ptr
直接初始化this的_M_ptr
,_M_refcount
对__r._M_refcount
调用swap
函数,并将__r._M_ptr
置为nullptr。__weak_ptr
的拷贝构造函数:用__r._M_refcount
直接初始化this的_M_refcount
,并将_M_ptr
赋值给this的_M_ptr
。unique_ptr
的拷贝构造函数:用__r.get()
直接初始化this的_M_ptr
,并且调用__shared_count
的对unique_ptr
的特化形式进行初始化。并对齐调用_M_enable_shared_from_this_with
。__r._M_ptr
和__r._M_refcount
直接赋值给this的_M_ptr
、_M_refcount
。__r
移动构造一个__shared_ptr
并和this进行swap
。reset
函数:用输入参数(或不带参数)构造一个__shared_ptr
,并与this进行swap
。swap
函数:对_M_ptr
调用std::swap
,对_M_refcount
调用类的swap
函数。owner_before
函数:对对_M_refcount
调用类的_M_less
函数。_M_enable_shared_from_this_with
函数:// 20.7.2.2.7 shared_ptr comparisons
template <typename _Tp1, typename _Tp2, _Lock_policy _Lp>
inline bool operator==(const __shared_ptr<_Tp1, _Lp>& __a, const __shared_ptr<_Tp2, _Lp>& __b) noexcept {
return __a.get() == __b.get();
}
template <typename _Tp, _Lock_policy _Lp>
inline bool operator==(const __shared_ptr<_Tp, _Lp>& __a, nullptr_t) noexcept {
return !__a;
}
#ifdef __cpp_lib_three_way_comparison
template <typename _Tp, typename _Up, _Lock_policy _Lp>
inline strong_ordering operator<=>(const __shared_ptr<_Tp, _Lp>& __a, const __shared_ptr<_Up, _Lp>& __b) noexcept {
return compare_three_way()(__a.get(), __b.get());
}
template <typename _Tp, _Lock_policy _Lp>
inline strong_ordering operator<=>(const __shared_ptr<_Tp, _Lp>& __a, nullptr_t) noexcept {
using pointer = typename __shared_ptr<_Tp, _Lp>::element_type*;
return compare_three_way()(__a.get(), static_cast<pointer>(nullptr));
}
#else
template <typename _Tp, _Lock_policy _Lp>
inline bool operator==(nullptr_t, const __shared_ptr<_Tp, _Lp>& __a) noexcept {
return !__a;
}
template <typename _Tp1, typename _Tp2, _Lock_policy _Lp>
inline bool operator!=(const __shared_ptr<_Tp1, _Lp>& __a, const __shared_ptr<_Tp2, _Lp>& __b) noexcept {
return __a.get() != __b.get();
}
template <typename _Tp, _Lock_policy _Lp>
inline bool operator!=(const __shared_ptr<_Tp, _Lp>& __a, nullptr_t) noexcept {
return (bool)__a;
}
template <typename _Tp, _Lock_policy _Lp>
inline bool operator!=(nullptr_t, const __shared_ptr<_Tp, _Lp>& __a) noexcept {
return (bool)__a;
}
template <typename _Tp, typename _Up, _Lock_policy _Lp>
inline bool operator<(const __shared_ptr<_Tp, _Lp>& __a, const __shared_ptr<_Up, _Lp>& __b) noexcept {
using _Tp_elt = typename __shared_ptr<_Tp, _Lp>::element_type;
using _Up_elt = typename __shared_ptr<_Up, _Lp>::element_type;
using _Vp = typename common_type<_Tp_elt*, _Up_elt*>::type;
return less<_Vp>()(__a.get(), __b.get());
}
template <typename _Tp, _Lock_policy _Lp>
inline bool operator<(const __shared_ptr<_Tp, _Lp>& __a, nullptr_t) noexcept {
using _Tp_elt = typename __shared_ptr<_Tp, _Lp>::element_type;
return less<_Tp_elt*>()(__a.get(), nullptr);
}
template <typename _Tp, _Lock_policy _Lp>
inline bool operator<(nullptr_t, const __shared_ptr<_Tp, _Lp>& __a) noexcept {
using _Tp_elt = typename __shared_ptr<_Tp, _Lp>::element_type;
return less<_Tp_elt*>()(nullptr, __a.get());
}
template <typename _Tp1, typename _Tp2, _Lock_policy _Lp>
inline bool operator<=(const __shared_ptr<_Tp1, _Lp>& __a, const __shared_ptr<_Tp2, _Lp>& __b) noexcept {
return !(__b < __a);
}
template <typename _Tp, _Lock_policy _Lp>
inline bool operator<=(const __shared_ptr<_Tp, _Lp>& __a, nullptr_t) noexcept {
return !(nullptr < __a);
}
template <typename _Tp, _Lock_policy _Lp>
inline bool operator<=(nullptr_t, const __shared_ptr<_Tp, _Lp>& __a) noexcept {
return !(__a < nullptr);
}
template <typename _Tp1, typename _Tp2, _Lock_policy _Lp>
inline bool operator>(const __shared_ptr<_Tp1, _Lp>& __a, const __shared_ptr<_Tp2, _Lp>& __b) noexcept {
return (__b < __a);
}
template <typename _Tp, _Lock_policy _Lp>
inline bool operator>(const __shared_ptr<_Tp, _Lp>& __a, nullptr_t) noexcept {
return nullptr < __a;
}
template <typename _Tp, _Lock_policy _Lp>
inline bool operator>(nullptr_t, const __shared_ptr<_Tp, _Lp>& __a) noexcept {
return __a < nullptr;
}
template <typename _Tp1, typename _Tp2, _Lock_policy _Lp>
inline bool operator>=(const __shared_ptr<_Tp1, _Lp>& __a, const __shared_ptr<_Tp2, _Lp>& __b) noexcept {
return !(__a < __b);
}
template <typename _Tp, _Lock_policy _Lp>
inline bool operator>=(const __shared_ptr<_Tp, _Lp>& __a, nullptr_t) noexcept {
return !(__a < nullptr);
}
template <typename _Tp, _Lock_policy _Lp>
inline bool operator>=(nullptr_t, const __shared_ptr<_Tp, _Lp>& __a) noexcept {
return !(nullptr < __a);
}
#endif // three-way comparison
// 20.7.2.2.8 shared_ptr specialized algorithms.
template <typename _Tp, _Lock_policy _Lp>
inline void swap(__shared_ptr<_Tp, _Lp> & __a, __shared_ptr<_Tp, _Lp> & __b) noexcept {
__a.swap(__b);
}
// 20.7.2.2.9 shared_ptr casts
// The seemingly equivalent code:
// shared_ptr<_Tp, _Lp>(static_cast<_Tp*>(__r.get()))
// will eventually result in undefined behaviour, attempting to
// delete the same object twice.
/// static_pointer_cast
template <typename _Tp, typename _Tp1, _Lock_policy _Lp>
inline __shared_ptr<_Tp, _Lp> static_pointer_cast(const __shared_ptr<_Tp1, _Lp>& __r) noexcept {
using _Sp = __shared_ptr<_Tp, _Lp>;
return _Sp(__r, static_cast<typename _Sp::element_type*>(__r.get()));
}
// The seemingly equivalent code:
// shared_ptr<_Tp, _Lp>(const_cast<_Tp*>(__r.get()))
// will eventually result in undefined behaviour, attempting to
// delete the same object twice.
/// const_pointer_cast
template <typename _Tp, typename _Tp1, _Lock_policy _Lp>
inline __shared_ptr<_Tp, _Lp> const_pointer_cast(const __shared_ptr<_Tp1, _Lp>& __r) noexcept {
using _Sp = __shared_ptr<_Tp, _Lp>;
return _Sp(__r, const_cast<typename _Sp::element_type*>(__r.get()));
}
// The seemingly equivalent code:
// shared_ptr<_Tp, _Lp>(dynamic_cast<_Tp*>(__r.get()))
// will eventually result in undefined behaviour, attempting to
// delete the same object twice.
/// dynamic_pointer_cast
template <typename _Tp, typename _Tp1, _Lock_policy _Lp>
inline __shared_ptr<_Tp, _Lp> dynamic_pointer_cast(const __shared_ptr<_Tp1, _Lp>& __r) noexcept {
using _Sp = __shared_ptr<_Tp, _Lp>;
if (auto* __p = dynamic_cast<typename _Sp::element_type*>(__r.get())) return _Sp(__r, __p);
return _Sp();
}
#if __cplusplus > 201402L
template <typename _Tp, typename _Tp1, _Lock_policy _Lp>
inline __shared_ptr<_Tp, _Lp> reinterpret_pointer_cast(const __shared_ptr<_Tp1, _Lp>& __r) noexcept {
using _Sp = __shared_ptr<_Tp, _Lp>;
return _Sp(__r, reinterpret_cast<typename _Sp::element_type*>(__r.get()));
}
#endif
swap
函数:调用__shard_ptr::swap
函数。*_pointer_cast
函数:实际上对实际的指针(__shared_ptr::get()
)调用了相应的*_cast
函数,并返回相应类型的__shared_ptr
。__weak_ptr
template <typename _Tp, _Lock_policy _Lp>
class __weak_ptr {
template <typename _Yp, typename _Res = void>
using _Compatible = typename enable_if<__sp_compatible_with<_Yp*, _Tp*>::value, _Res>::type;
// Constraint for assignment from shared_ptr and weak_ptr:
template <typename _Yp>
using _Assignable = _Compatible<_Yp, __weak_ptr&>;
public:
using element_type = typename remove_extent<_Tp>::type;
constexpr __weak_ptr() noexcept : _M_ptr(nullptr), _M_refcount() {}
__weak_ptr(const __weak_ptr&) noexcept = default;
~__weak_ptr() = default;
// The "obvious" converting constructor implementation:
//
// template
// __weak_ptr(const __weak_ptr<_Tp1, _Lp>& __r)
// : _M_ptr(__r._M_ptr), _M_refcount(__r._M_refcount) // never throws
// { }
//
// has a serious problem.
//
// __r._M_ptr may already have been invalidated. The _M_ptr(__r._M_ptr)
// conversion may require access to *__r._M_ptr (virtual inheritance).
//
// It is not possible to avoid spurious access violations since
// in multithreaded programs __r._M_ptr may be invalidated at any point.
template <typename _Yp, typename = _Compatible<_Yp>>
__weak_ptr(const __weak_ptr<_Yp, _Lp>& __r) noexcept : _M_refcount(__r._M_refcount) {
_M_ptr = __r.lock().get();
}
template <typename _Yp, typename = _Compatible<_Yp>>
__weak_ptr(const __shared_ptr<_Yp, _Lp>& __r) noexcept : _M_ptr(__r._M_ptr), _M_refcount(__r._M_refcount) {}
__weak_ptr(__weak_ptr&& __r) noexcept : _M_ptr(__r._M_ptr), _M_refcount(std::move(__r._M_refcount)) {
__r._M_ptr = nullptr;
}
template <typename _Yp, typename = _Compatible<_Yp>>
__weak_ptr(__weak_ptr<_Yp, _Lp>&& __r) noexcept
: _M_ptr(__r.lock().get()), _M_refcount(std::move(__r._M_refcount)) {
__r._M_ptr = nullptr;
}
__weak_ptr& operator=(const __weak_ptr& __r) noexcept = default;
template <typename _Yp>
_Assignable<_Yp> operator=(const __weak_ptr<_Yp, _Lp>& __r) noexcept {
_M_ptr = __r.lock().get();
_M_refcount = __r._M_refcount;
return *this;
}
template <typename _Yp>
_Assignable<_Yp> operator=(const __shared_ptr<_Yp, _Lp>& __r) noexcept {
_M_ptr = __r._M_ptr;
_M_refcount = __r._M_refcount;
return *this;
}
__weak_ptr& operator=(__weak_ptr&& __r) noexcept {
_M_ptr = __r._M_ptr;
_M_refcount = std::move(__r._M_refcount);
__r._M_ptr = nullptr;
return *this;
}
template <typename _Yp>
_Assignable<_Yp> operator=(__weak_ptr<_Yp, _Lp>&& __r) noexcept {
_M_ptr = __r.lock().get();
_M_refcount = std::move(__r._M_refcount);
__r._M_ptr = nullptr;
return *this;
}
__shared_ptr<_Tp, _Lp> lock() const noexcept { return __shared_ptr<element_type, _Lp>(*this, std::nothrow); }
long use_count() const noexcept { return _M_refcount._M_get_use_count(); }
bool expired() const noexcept { return _M_refcount._M_get_use_count() == 0; }
template <typename _Tp1>
bool owner_before(const __shared_ptr<_Tp1, _Lp>& __rhs) const noexcept {
return _M_refcount._M_less(__rhs._M_refcount);
}
template <typename _Tp1>
bool owner_before(const __weak_ptr<_Tp1, _Lp>& __rhs) const noexcept {
return _M_refcount._M_less(__rhs._M_refcount);
}
void reset() noexcept { __weak_ptr().swap(*this); }
void swap(__weak_ptr& __s) noexcept {
std::swap(_M_ptr, __s._M_ptr);
_M_refcount._M_swap(__s._M_refcount);
}
private:
// Used by __enable_shared_from_this.
void _M_assign(_Tp* __ptr, const __shared_count<_Lp>& __refcount) noexcept {
if (use_count() == 0) {
_M_ptr = __ptr;
_M_refcount = __refcount;
}
}
template <typename _Tp1, _Lock_policy _Lp1>
friend class __shared_ptr;
template <typename _Tp1, _Lock_policy _Lp1>
friend class __weak_ptr;
friend class __enable_shared_from_this<_Tp, _Lp>;
friend class enable_shared_from_this<_Tp>;
element_type* _M_ptr; // Contained pointer.
__weak_count<_Lp> _M_refcount; // Reference counter.
};
// 20.7.2.3.6 weak_ptr specialized algorithms.
template <typename _Tp, _Lock_policy _Lp>
inline void swap(__weak_ptr<_Tp, _Lp> & __a, __weak_ptr<_Tp, _Lp> & __b) noexcept {
__a.swap(__b);
}
_M_ptr
实际的指针,_M_refcount
引用计数。_M_ptr
、_M_refcount
来初始化自己的数据。_M_refcount
来初始化自己的_M_refcount
,但_M_ptr
的初始化需要获得另一个对象的_M_ptr
的时候加锁。_shared_ptr
的拷贝构造函数,直接用这个_shared_ptr
的_M_ptr
、_M_refcount
来初始化自己的数据。_M_ptr
、_M_refcount
来初始化自己的数据。最后,需要将另一个对象的_M_ptr
置为nullptr。_M_ptr
的初始化需要获得另一个对象的_M_ptr
的时候加锁,_M_refcount
移动构造,将另一个对象的_M_ptr
置为nullptr。lock
函数:用此类的元素构造一个__shared_ptr
。owner_before
函数:_M_refcount
对__r._M_refcount
调用_M_less
函数。weak_ptr
的实际指针时需要加锁,以及为何加锁函数是这么设计的?weak_ptr
只是一个弱引用,并不真正的持有这个指针,所以在不同类型指针复制的时候需要加锁,防止因多线程问题,这个指针被销毁。mutex
等的加锁,而是将其转为一个shared_ptr
,因为它是持有这个指针的,正常情况下复制的过程会得到符合预期的结果。_enable_shared_from_this
template <typename _Tp, _Lock_policy _Lp>
class __enable_shared_from_this {
protected:
constexpr __enable_shared_from_this() noexcept {}
__enable_shared_from_this(const __enable_shared_from_this&) noexcept {}
__enable_shared_from_this& operator=(const __enable_shared_from_this&) noexcept { return *this; }
~__enable_shared_from_this() {}
public:
__shared_ptr<_Tp, _Lp> shared_from_this() { return __shared_ptr<_Tp, _Lp>(this->_M_weak_this); }
__shared_ptr<const _Tp, _Lp> shared_from_this() const {
return __shared_ptr<const _Tp, _Lp>(this->_M_weak_this);
}
#if __cplusplus > 201402L || !defined(__STRICT_ANSI__) // c++1z or gnu++11
__weak_ptr<_Tp, _Lp> weak_from_this() noexcept { return this->_M_weak_this; }
__weak_ptr<const _Tp, _Lp> weak_from_this() const noexcept { return this->_M_weak_this; }
#endif
private:
template <typename _Tp1>
void _M_weak_assign(_Tp1* __p, const __shared_count<_Lp>& __n) const noexcept {
_M_weak_this._M_assign(__p, __n);
}
friend const __enable_shared_from_this* __enable_shared_from_this_base(const __shared_count<_Lp>&,
const __enable_shared_from_this* __p) {
return __p;
}
template <typename, _Lock_policy>
friend class __shared_ptr;
mutable __weak_ptr<_Tp, _Lp> _M_weak_this;
};
__weak_ptr
。shared_from_this
就将这个成员变构造一个__shared_ptr
,weak_from_this
。__make_shared
template <typename _Tp, _Lock_policy _Lp = __default_lock_policy, typename _Alloc, typename... _Args>
inline __shared_ptr<_Tp, _Lp> __allocate_shared(const _Alloc& __a, _Args&&... __args) {
return __shared_ptr<_Tp, _Lp>(_Sp_alloc_shared_tag<_Alloc>{__a}, std::forward<_Args>(__args)...);
}
template <typename _Tp, _Lock_policy _Lp = __default_lock_policy, typename... _Args>
inline __shared_ptr<_Tp, _Lp> __make_shared(_Args && ... __args) {
typedef typename std::remove_const<_Tp>::type _Tp_nc;
return std::__allocate_shared<_Tp, _Lp>(std::allocator<_Tp_nc>(), std::forward<_Args>(__args)...);
}
利用传入的参数构建一个__shared_ptr
。
std::hash
对__shared_ptr
的特化形式/// std::hash specialization for __shared_ptr.
template <typename _Tp, _Lock_policy _Lp>
struct hash<__shared_ptr<_Tp, _Lp>> : public __hash_base<size_t, __shared_ptr<_Tp, _Lp>> {
size_t operator()(const __shared_ptr<_Tp, _Lp>& __s) const noexcept {
return hash<typename __shared_ptr<_Tp, _Lp>::element_type*>()(__s.get());
}
};
主要是退化为std::hash
对ptr的特化形式。
__owner_less
template <typename _Tp, typename _Tp1>
struct _Sp_owner_less : public binary_function<_Tp, _Tp, bool> {
bool operator()(const _Tp& __lhs, const _Tp& __rhs) const noexcept { return __lhs.owner_before(__rhs); }
bool operator()(const _Tp& __lhs, const _Tp1& __rhs) const noexcept { return __lhs.owner_before(__rhs); }
bool operator()(const _Tp1& __lhs, const _Tp& __rhs) const noexcept { return __lhs.owner_before(__rhs); }
};
template <>
struct _Sp_owner_less<void, void> {
template <typename _Tp, typename _Up>
auto operator()(const _Tp& __lhs, const _Up& __rhs) const noexcept -> decltype(__lhs.owner_before(__rhs)) {
return __lhs.owner_before(__rhs);
}
using is_transparent = void;
};
template <typename _Tp, _Lock_policy _Lp>
struct owner_less<__shared_ptr<_Tp, _Lp>> : public _Sp_owner_less<__shared_ptr<_Tp, _Lp>, __weak_ptr<_Tp, _Lp>> {};
template <typename _Tp, _Lock_policy _Lp>
struct owner_less<__weak_ptr<_Tp, _Lp>> : public _Sp_owner_less<__weak_ptr<_Tp, _Lp>, __shared_ptr<_Tp, _Lp>> {};
主要调用owner_before
函数,没有过于特别的逻辑。
文件的说明这个文件里面是真正对外的接口的说明,实际上shared_ptr
、weak_ptr
、enable_shared_from_this
等等都是对
中的相应的类的调用,没有特别的逻辑。
_GLIBCXX_SYNCHRONIZATION_HAPPENS_*
摘自
// Macros for race detectors.
// _GLIBCXX_SYNCHRONIZATION_HAPPENS_BEFORE(A) and
// _GLIBCXX_SYNCHRONIZATION_HAPPENS_AFTER(A) should be used to explain
// atomic (lock-free) synchronization to race detectors:
// the race detector will infer a happens-before arc from the former to the
// latter when they share the same argument pointer.
//
// The most frequent use case for these macros (and the only case in the
// current implementation of the library) is atomic reference counting:
// void _M_remove_reference()
// {
// _GLIBCXX_SYNCHRONIZATION_HAPPENS_BEFORE(&this->_M_refcount);
// if (__gnu_cxx::__exchange_and_add_dispatch(&this->_M_refcount, -1) <= 0)
// {
// _GLIBCXX_SYNCHRONIZATION_HAPPENS_AFTER(&this->_M_refcount);
// _M_destroy(__a);
// }
// }
// The annotations in this example tell the race detector that all memory
// accesses occurred when the refcount was positive do not race with
// memory accesses which occurred after the refcount became zero.
#ifndef _GLIBCXX_SYNCHRONIZATION_HAPPENS_BEFORE
# define _GLIBCXX_SYNCHRONIZATION_HAPPENS_BEFORE(A)
#endif
#ifndef _GLIBCXX_SYNCHRONIZATION_HAPPENS_AFTER
# define _GLIBCXX_SYNCHRONIZATION_HAPPENS_AFTER(A)
#endif
翻译整理如下:
_GLIBCXX_SYNCHRONIZATION_HAPPENS_BEFORE(A)
和_GLIBCXX_SYNCHRONIZATION_HAPPENS_AFTER(A)
是用来竞争检测的宏,用在atomic(无锁)的同步。
上述代码中的例子,这两个宏的使用会告诉race detector,当refcount是正数的时候,所有内存读取不会和refcount变成0之后的内存读取相竞争。
__exchange_and_add_dispatch
参见文件
和网页,它的函数原型:
_Atomic_word
__exchange_and_add_dispatch(volatile _Atomic_word*, int);
功能:第一个参数与第二个参数相加,并返回第一个参数的旧值。
_Lock_policy
参见
// Available locking policies:
// _S_single single-threaded code that doesn't need to be locked.
// _S_mutex multi-threaded code that requires additional support
// from gthr.h or abstraction layers in concurrence.h.
// _S_atomic multi-threaded code using atomic operations.
enum _Lock_policy { _S_single, _S_mutex, _S_atomic };
// Compile time constant that indicates prefered locking policy in
// the current configuration.
static const _Lock_policy __default_lock_policy =
#ifndef __GTHREADS
_S_single;
#elif defined _GLIBCXX_HAVE_ATOMIC_LOCK_POLICY
_S_atomic;
#else
_S_mutex;
#endif
_Lock_policy
是个枚举类型,有三个变量,解释如下:
_S_single
:单线程,不需要加锁_S_mutex
:多线程,需要加锁的_S_atomic
:多线程,使用原子操作std::less
以下内容摘抄自网页:
A specialization of
std::less
for any pointer type yields the implementation-defined strict total order
即对指针来讲,std::less
会有一个视实现而定的严格完全顺序。也就是说,用std::less
比较指针是可行的。
__shared_count
的/* is_array = */ false_type
是啥意思?什么用法?