代码随想录 动态规划 12

309. 买卖股票的最佳时机含冷冻期

给定一个整数数组prices,其中第  prices[i] 表示第 i 天的股票价格 。​

设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):

  • 卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

思路:设置为四个状态,持有股票,未持有股票且非冷冻期状态,今日卖出股票,冷冻期

class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        n = len(prices)
        if n == 0:
            return 0
        dp = [[0] * 4 for _ in range(n)] 
        dp[0][0] = -prices[0]  
        for i in range(1, n):
            dp[i][0] = max(dp[i-1][0], max(dp[i-1][3], dp[i-1][1]) - prices[i]) 
            dp[i][1] = max(dp[i-1][1], dp[i-1][3])  
            dp[i][2] = dp[i-1][0] + prices[i]  
            dp[i][3] = dp[i-1][2]  
        return max(dp[n-1][3], dp[n-1][1], dp[n-1][2])  

714. 买卖股票的最佳时机含手续费

给定一个整数数组 prices,其中 prices[i]表示第 i 天的股票价格 ;整数 fee 代表了交易股票的手续费用。

你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。

返回获得利润的最大值。

注意:这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费

思路:在卖出时添上手续费即可

class Solution:

    def maxProfit(self, prices: List[int], fee: int) -> int:
        n = len(prices)
        dp = [[0] * 2 for _ in range(n)]
        dp[0][0] = -prices[0] 
        for i in range(1, n):
            dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i])
            dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i] - fee)
        return max(dp[-1][0], dp[-1][1])

你可能感兴趣的:(动态规划,算法)