- 搜广推校招面经四十四
Y1nhl
搜广推面经python机器学习人工智能pytorch开发语言
快手主站推荐算法一、因果里面前门准则是什么(Front-DoorCriterion)前门准则是因果推断中的一个重要概念,用于在存在未观测混杂因素的情况下识别因果效应。它由朱迪亚·珀尔(JudeaPearl)提出,是后门准则的补充。1.1.定义前门准则适用于以下情况:存在一个中介变量MMM,它完全介导了处理变量XXX对结果变量YYY的因果效应。处理变量XXX和结果变量YYY之间存在未观测的混杂因素U
- 【学习思维模型】
宇希啊
思维模型学习
学习思维模型一、理解类模型二、记忆类模型三、解决问题类模型四、结构化学习模型五、效率与习惯类模型六、高阶思维模型七、实践建议八、新增学习思维模型**1.波利亚问题解决四步法****2.主动回忆(ActiveRecall)****3.鱼骨图(因果图/IshikawaDiagram)****4.MECE原则(MutuallyExclusive,CollectivelyExhaustive)****5.
- AIGC实战——Transformer模型
盼小辉丶
AIGCtransformer深度学习
AIGC实战——Transformer模型0.前言1.T52.GPT-3和GPT-43.ChatGPT小结系列链接0.前言我们在GPT(GenerativePre-trainedTransformer)一节所构建的GPT模型是一个解码器Transformer,它逐字符地生成文本字符串,并使用因果掩码只关注输入字符串中的前一个单词。另一些编码器Transformer,不使用因果掩码,而是关注整个输入
- 文本标注工具(brat)
deepdata_cn
文本标注文本标注
文本标注是自然语言处理领域中的一项基础且关键的任务,它主要是指专业的标注人员或借助特定的标注工具,按照一定的规则和标准,对文本内容进行标记和注释,从而赋予文本特定的语义信息和结构信息。具体来说,标注人员会根据任务需求,在文本中识别并标记出各种元素,比如将文本中的人名、地名、组织机构名等标注为不同的实体类型,确定文本中不同实体之间存在的关系,像因果关系、所属关系等,还会对文本中的特定事件进行标注,记
- 双盲机制(信念,欲望):模型上下文通常会包含所有信,双盲机制屏蔽:每个智能体分别进行独立的模型调用
ZhangJiQun&MXP
教学2021AIpython2024大模型以及算力人工智能androidpython自然语言处理pycharm
如何让人工智能生成的说服性对话更接近真实的日常交流目录如何让人工智能生成的说服性对话更接近真实的日常交流**一、核心创新点解析****1.双盲对话生成机制****2.因果心理理论指导****3.多智能体协作框架ToMMA****二、实验结论****三、论文贡献**怎么代码中实现Agent的双盲场景假设代码实现代码解释注意事项模型上下文通常会包含所有信,双盲机制屏蔽:每个智能体分别进行独立的模型调用
- 因果推断在智能广告中的实践
AI天才研究院
计算AI大模型应用入门实战与进阶大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA计算AI大模型应用
非常感谢您提出这个有趣的话题。让我们一步步设计一个关于"因果推断在智能广告中的实践"的系统架构。这个项目将涉及复杂的数据分析、机器学习和广告投放系统,我们需要仔细考虑各个方面以确保系统的有效性和可扩展性。文章目录因果推断在智能广告中的实践-系统架构设计1.需求分析1.1功能需求1.2非功能性需求2.系统概述2.1高层次系统描述2.2主要组件及关系2.3系统核心流程3.详细架构设计3.1数据收集模块
- 音频进阶学习十六——LTI系统的差分方程与频域分析一(频率响应)
山河君
#语音信号处理学习信号处理音视频
文章目录前言一、差分方程的有理式1.差分方程的有理分式2.因果系统和ROC3.稳定性与ROC二、频率响应1.定义2.幅频响应3.相频响应4.群延迟总结前言本篇文章会先复习Z变换的有理分式,这是之前文章中提过的内容,这里会将差分方程和有理分式进行结合来看。主要是通过有理分式进行对于冲激响应的表达,以及根据导函数对于频率响应的介绍。本文会对Z变换的频率响应中的幅频响应、相频响应以及群延迟的表达式进行推
- 在数据分析工作中运用因果推断模型的实践指南
theskylife
#因果分析数据分析大数据人工智能AI因果分析
目录1.写在开头2.因果推断模型的基础2.1因果关系vs.相关关系2.2基本概念和术语3.常见的因果推断方法3.1随机对照试验(RCTs)3.2工具变量法(IV)3.3回归不连续设计(RDD)4.因果推断的实际应用4.1案例研究1:使用RCTs分析营销活动的效果4.1.1背景和问题描述4.1.2实验设计和数据收集4.1.3数据分析和结果解释4.2案例研究2:应用工具变量法解决价格对销量的影响问题4
- 困惑度的估计
转码的小石
语言模型
固定长度模型的困惑度(Perplexity,PPL)困惑度(PPL)是评估语言模型性能的常用指标。需要注意的是,这个指标专门适用于经典的语言模型(有时称为自回归模型或因果语言模型),而对于像BERT这样的掩码语言模型,则定义不太清楚(请参考模型总结)。经典语言模型:经典语言模型的目标是计算给定一段文本的概率,具体来说,就是计算一个序列中每个token的条件概率,n-gram模型是最基础的经典语言模
- 推理模型时代:大语言模型如何从对话走向深度思考?
深度学习机器
优质项目RAG大语言模型语言模型人工智能开源
一、对话模型和推理模型的区别概述对话模型是专门用于问答交互的语言模型,符合人类的聊天方式,返回的内容可能仅仅只是一个简短的答案,一般模型名称后面会带有「chat」字样。推理模型是比较新的产物,没有明确的定义,一般是指输出过程中带有和或其他表示思考过程的模型,在返回的内容中可以明确看到模型自身存在思考和反思行为。两者的区别可以概括如下:维度推理模型对话模型核心目标解决复杂逻辑推理、数学计算、因果推断
- 为AI聊天工具添加一个知识系统 之113 详细设计之54 Chance:偶然和适配 之2
一水鉴天
软件智能智能制造人工语言开发语言人工智能
本文要点要点祖传代码中的”槽“(占位符变量)和它在实操中的三种槽(占据槽,请求槽和填充槽,实时数据库(source)中数据(流入ETL的一个正序流程行列并发靶向整形绑定变量)是如何通过“命名所依的AI行为”、“分类所缘的因果结构”和“求实所据的机器特征”(元数据仓库OLAP的三个行式并行服务进程锚定配形-限定变量)来精确锚定ETL任务绑定中的这个绑定到底是,谁和谁的什么绑定(资源存储库随着ETL的
- 软件工程-软件测试
Wlq0415
软件工程软件工程
目录测试的目的测试原则测试过程传统软件的测试策略单元测试的测试内容(考点)集成测试确认测试准则/有效性测试测试方法黑盒测试等价类划分边界值分析错误推测因果图判定表白盒测试WEB服务器测试测试的目的就是希望能以最少的人力和时间发现潜在的各种错误和缺陷。测试原则应尽早、不断地进行测试。测试工作应该避免由原开发软件的人或小组承担在设计测试方案时,不仅要确定输入数据,而且要根据系统功能确定预期输出结果。在
- 【深入探索-deepseek】高等数学与AI的因果关系
我的青春不太冷
人工智能机器学习数学
目录数学在AI不同领域的应用区别一、计算机视觉领域1.线性代数2.微积分3.概率论与统计二、自然语言处理领域三、语音识别领域四、数学在AI不同领域应用的逻辑图五、参考资料数学在AI不同领域的应用区别一、计算机视觉领域1.线性代数图像变换:想象我们有一张二维图片,图片里有个点,它的位置用坐标((x,y))表示。现在我们想把这个点绕着图片的原点(就像把纸钉在墙上,以钉子的位置为中心)逆时针旋转一定角度
- 软件测试用例设计方法:正交试验冲锋
测试老哥
测试用例python软件测试自动化测试测试工具功能测试职场和发展
点击文末小卡片,免费获取软件测试全套资料,资料在手,涨薪更快1、引言上篇讲了因果图和判定表法,而这两种方法在变量值很多、排列组合数量极大的场景下,会生成非常庞大且冗余的测试用例,此时我们很难对所有组合场景进行全量测试用例覆盖,基于此短板,正交试验法应运而生。2、概念及原理2.1定义正交试验法是研究多因素、多水平的一种试验法,它是利用正交表来对试验进行设计,通过少数的试验替代全面试验思想:用部分试验
- 【时序预测】-深度学习系列
TIM老师
时序预测深度学习时序预测
Wavenet(2016)重点:CNN系列+因果卷积+膨胀卷积核心:确保了输出的时间点只依赖于输入序列中时间戳早于或等于该输出时间点的数据,核心模块膨胀卷积能够扩大卷积层的感受野,从而更充分学习序列的全局信息。DeepAR(2017Amazon)DeepAR:ProbabilisticForecastingwithAutoregressiveRecurrentNetworks重点:RNN系列+多元
- 主题聚类:精炼信息的关键步骤
XianxinMao
聚类数据挖掘机器学习
标题:主题聚类:精炼信息的关键步骤文章信息摘要:主题聚类是一种关键的信息整合方法,通过识别相似主题、合并重复内容并保留最完整、准确的版本来优化信息结构。这一过程不仅减少了信息冗余,还提高了信息的质量和可用性,广泛应用于学术研究、内容创作和数据分析等领域。逻辑层级的建立则帮助区分主要和次要观点,识别因果关系,构建清晰的逻辑框架,使观点更具说服力。信息完整性要求每个观点都得到完整表达,补充必要的上下文
- 因果推断与机器学习—因果表征学习与泛化能力
樱花的浪漫
因果推断机器学习学习人工智能深度学习自然语言处理计算机视觉
近十年来,深度学习在多个领域取得了巨大成功,包括机器视觉、自然语言处理、语音识别和生物信息等。这些成功为机器学习技术的进一步发展和应用奠定了基础。表征学习是深度学习的核心技术之一。在机器学习问题中,其主要目的是从观测到的低级变量中提取信息,进而学习到能够准确预测目标变量的高级变量。这种从低层次到高层次变量的学习过程,有助于模型更好地理解数据和进行预测。以德国马克斯-普朗克研究所的BernhardS
- 第二篇:多模态技术突破——DeepSeek如何重构AI的感知与认知边界
python算法(魔法师版)
动态规划
——从跨模态对齐到因果推理的工程化实践在AI技术从单一模态向多模态跃迁的关键阶段,DeepSeek通过自研的多模态融合框架,在视觉-语言-语音的联合理解与生成领域实现系统性突破。本文将从技术实现层面,解构其跨模态表征学习、动态融合机制与因果推理能力的内在创新。1.跨模态对齐革命:时空一致性建模传统多模态模型常面临模态割裂问题,DeepSeek提出「时空同步对比学习」(ST-CL)框架:视觉-语言对
- 因果关系推断与机器学习
hhhh106
读书笔记大数据
因果关系定义设X和Y是两个随机变量。定义X是Y的因,即因果关系X→Y存在,当且仅当Y的取值一定会随X的取值变化而发生变化。两个变量X、Y之间有相关性往往不是我们能判断它们之间有因果关系的依据。其中包括三种情况:X是Y的因、X是Y的果、X与Y有共同原因(commoncause)。对于第三种情况,我们把这种不是因果关系的相关性叫作虚假相关(spuriouscorrelation)。机器学习模型是强大的
- 【深度学习】因果推断与机器学习的高级实践 数学建模_问题根因 分析 机器学习
2401_84239830
程序员深度学习机器学习数学建模
现阶段深度学习有三大特征:数据驱动:即数据训练,将数据输入到模型中进行训练;关联学习:模型基于给定训练数据集,进行关联学习;概率输出:即最后的输出,判断这个图片有“狗“的概率是多少。以数据驱动、关联学习、概率输出为特征的深度学习存在什么问题呢?以一个简单的图片识别问题为例:识别一张图片中是否有狗。在很多预测问题中,我们拿到的数据集往往都是有偏的,比如我们拿到的数据中有80%的图片中狗都在草地上,这
- 因果推断与机器学习—因果推断入门(1)
樱花的浪漫
因果推断机器学习人工智能计算机视觉搜索引擎深度学习算法
在机器学习被广泛应用于对人类产生巨大影响的场景(如社交网络、电商、搜索引擎等)的今天,因果推断的重要性开始在机器学习社区的论文和演讲中被不断提及。图灵奖得主YoshuaBengio在对系统2(system2,这个说法来自心理学家DanielKahneman的作品,人类大脑由两套系统构成:系统1负责快速思考,做出下意识的反应;系统2则负责比较耗时的思考,如理解事物之间的因果关系)的畅想中强调,在实现
- 5. 言语理解与表达 5-中心理解题-关联词因果
上岸学堂
行测小白到上岸-言语理解与表达行测百日上岸计划人工智能经验分享学习职场和发展大数据java
关联词-因果核心特征结论是重点:在因果关系中,结论通常是文段的中心内容。典型格式:因为……所以……由于……因此……结论句位置结论句的位置对解题有重要影响,主要有以下几种情况:结论句在结尾这是最常见的情况,也是最容易识别的。例:“近年来,我国持续加大环境保护力度,实施了一系列严格的污染防治措施。因此,空气质量明显改善,PM2.5浓度大幅下降。”在这个例子中,结论"空气质量明显改善,PM2.5浓度大幅
- 软件测试学习路线
IT菇凉
单元测试jmeter功能测试
软件测试学习路线1.软件测试基础知识内容软件测试职业以及发展定位软件测试的概述&原则软件测试的策略及详细讲解软件测试的生命周期软件测试工作流程软件需求分析制作详解软件测试计划的编写软件测试用例的常用方法–等价类,边界值软件测试用例的常用方法–因果图,判定表测试用例的常用方法–状态迁移图;场景法软件测试环境准备&团队组织架构&职责划分bug编写规范,教你写出不low的缺陷bug的流转与状态处理缺陷编
- 嵌入式工程师必学(99):直流电路定理
芯片-嵌入式
嵌入式硬件
线性度属性LinearityProperty线性是描述因果之间线性关系的元素的属性。它是均匀性和可加性特性的组合。齐次性属性要求,如果输入(激励)乘以一个常数,则输出(响应)乘以相同的常数。例如,对于电阻,欧姆定律将输入i与输出v相关联:v=iR。如果i增加一个常数k,则v相应地增加k;那是可加性属性要求对输入之和的响应是对单独应用的每个输入的响应之和。因此,对于电阻,如果V1=i1R
- 分布式因果推断在美团履约平台的探索与实践 思维导图-java架构
用心去追梦
java架构开发语言
为了创建一个关于“分布式因果推断在美团履约平台的探索与实践”的思维导图,并且专注于Java架构下的实现,我们可以将这个主题分解为几个关键领域。这包括:项目背景、因果推断的基本概念、数据收集与预处理、分布式系统设计、算法选择与实现、性能优化策略、以及效果评估与迭代。以下是这个主题的思维导图结构建议:思维导图结构1.项目背景美团履约平台简介平台业务流程(如外卖配送、闪购等)履约效率的重要性分布式因果推
- PyTorch FlexAttention技术实践:基于BlockMask实现因果注意力与变长序列处理
本文介绍了如何利用torch2.5及以上版本中新引入的FlexAttention和BlockMask功能来实现因果注意力机制与填充输入的处理。鉴于目前网络上缺乏关于FlexAttention处理填充输入序列的完整代码示例和技术讨论,本文将详细阐述一种实现方法,该方法同时涵盖了因果注意力机制的实现。本文不会详细讨论FlexAttention的理论基础,如需了解更多技术细节,建议参考PyTorch官方
- 水泥质量纠纷案代理词
徐宝峰律师
贵州领航建设有限公司诉贵州纳雍隆庆乌江水泥有限公司产品质量纠纷案代理词尊敬的审判长、审判员:贵州千里律师事务所接受被告贵州纳雍隆庆乌江水泥有限公司的委托,指派我担任其诉讼代理人,参加本案的诉讼活动。下面,我结合本案事实和相关法律规定发表如下代理意见,供合议庭评议案件时参考:原告应当举证证明其遭受的损失与被告生产的水泥质量的因果关系。首先水泥是一种粉状水硬性无机胶凝材料。加水搅拌后成浆体,能在空气中
- 阅读笔记:阅读方法中的逻辑和转念
施吉涛
聊聊一些阅读的方法论吧,别人家的读书方法刚开始想写,然后就不知道写什么了,因为作者写的非常的“精致”我有一种乡巴佬进城的感觉,看到精美的摆盘,精致的食材不知道该如何下口也就是《阅读的方法》,我们姑且来试一下强劲的大脑篇,第一节:逻辑通俗的来讲,也就是表达的排列和顺序,再进一步就是因果关系和关联实际上书已经看了大概一遍,但直到打算写一下笔记的时候,才发现作者讲的推理更多的是阅读的对象中呈现出的逻辑也
- 你的善良,人不知,天知
似水流年2024
善良的人,才会有一颗百纳海川的心,能容,能忍,能让,能帮。善良的人,才会心存善念,看到别人有难时,就会伸手相帮;看到弱者被欺负时,就会挺身而出。善良的人,总是为别人想的太多,遇到什么事,都会换位思考,宁愿自己吃亏,受委屈,也不会去与别人争输赢。善良的人,因为不怕吃亏,所以更不会吃亏,世间有因果,善恶老天自会判断,你现在吃的亏,以后都会加倍的还你。善良的人,因为不怕上当,所以更不会上当,人若欺你,老
- 碎语
我的故事不要钱
图片发自App你之所以还没有变成孙悟空,是因为你还没有遇到那个给你三颗痣的人。曾几何时,开始细数生辰?回忆总是在雨后,潮湿的教学楼,还有多少路要走?我该如何遗忘?在这思念和回忆交织的地方。奈何那短长情丝,剪不断还生发是空空荡荡,却嗡嗡作响念初,如故。念初?如故??该隐瞒的事总清晰,千言万语只能无语有生之年狭路相逢终不能幸免悲哀是真的泪是假的,本来没因果你在南在北?遇见多少归人?摔碎几盏茶杯?待历经
- mondb入手
木zi_鸣
mongodb
windows 启动mongodb 编写bat文件,
mongod --dbpath D:\software\MongoDBDATA
mongod --help 查询各种配置
配置在mongob
打开批处理,即可启动,27017原生端口,shell操作监控端口 扩展28017,web端操作端口
启动配置文件配置,
数据更灵活 
- 大型高并发高负载网站的系统架构
bijian1013
高并发负载均衡
扩展Web应用程序
一.概念
简单的来说,如果一个系统可扩展,那么你可以通过扩展来提供系统的性能。这代表着系统能够容纳更高的负载、更大的数据集,并且系统是可维护的。扩展和语言、某项具体的技术都是无关的。扩展可以分为两种:
1.
- DISPLAY变量和xhost(原创)
czmmiao
display
DISPLAY
在Linux/Unix类操作系统上, DISPLAY用来设置将图形显示到何处. 直接登陆图形界面或者登陆命令行界面后使用startx启动图形, DISPLAY环境变量将自动设置为:0:0, 此时可以打开终端, 输出图形程序的名称(比如xclock)来启动程序, 图形将显示在本地窗口上, 在终端上输入printenv查看当前环境变量, 输出结果中有如下内容:DISPLAY=:0.0
- 获取B/S客户端IP
周凡杨
java编程jspWeb浏览器
最近想写个B/S架构的聊天系统,因为以前做过C/S架构的QQ聊天系统,所以对于Socket通信编程只是一个巩固。对于C/S架构的聊天系统,由于存在客户端Java应用,所以直接在代码中获取客户端的IP,应用的方法为:
String ip = InetAddress.getLocalHost().getHostAddress();
然而对于WEB
- 浅谈类和对象
朱辉辉33
编程
类是对一类事物的总称,对象是描述一个物体的特征,类是对象的抽象。简单来说,类是抽象的,不占用内存,对象是具体的,
占用存储空间。
类是由属性和方法构成的,基本格式是public class 类名{
//定义属性
private/public 数据类型 属性名;
//定义方法
publ
- android activity与viewpager+fragment的生命周期问题
肆无忌惮_
viewpager
有一个Activity里面是ViewPager,ViewPager里面放了两个Fragment。
第一次进入这个Activity。开启了服务,并在onResume方法中绑定服务后,对Service进行了一定的初始化,其中调用了Fragment中的一个属性。
super.onResume();
bindService(intent, conn, BIND_AUTO_CREATE);
- base64Encode对图片进行编码
843977358
base64图片encoder
/**
* 对图片进行base64encoder编码
*
* @author mrZhang
* @param path
* @return
*/
public static String encodeImage(String path) {
BASE64Encoder encoder = null;
byte[] b = null;
I
- Request Header简介
aigo
servlet
当一个客户端(通常是浏览器)向Web服务器发送一个请求是,它要发送一个请求的命令行,一般是GET或POST命令,当发送POST命令时,它还必须向服务器发送一个叫“Content-Length”的请求头(Request Header) 用以指明请求数据的长度,除了Content-Length之外,它还可以向服务器发送其它一些Headers,如:
- HttpClient4.3 创建SSL协议的HttpClient对象
alleni123
httpclient爬虫ssl
public class HttpClientUtils
{
public static CloseableHttpClient createSSLClientDefault(CookieStore cookies){
SSLContext sslContext=null;
try
{
sslContext=new SSLContextBuilder().l
- java取反 -右移-左移-无符号右移的探讨
百合不是茶
位运算符 位移
取反:
在二进制中第一位,1表示符数,0表示正数
byte a = -1;
原码:10000001
反码:11111110
补码:11111111
//异或: 00000000
byte b = -2;
原码:10000010
反码:11111101
补码:11111110
//异或: 00000001
- java多线程join的作用与用法
bijian1013
java多线程
对于JAVA的join,JDK 是这样说的:join public final void join (long millis )throws InterruptedException Waits at most millis milliseconds for this thread to die. A timeout of 0 means t
- Java发送http请求(get 与post方法请求)
bijian1013
javaspring
PostRequest.java
package com.bijian.study;
import java.io.BufferedReader;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.HttpURL
- 【Struts2二】struts.xml中package下的action配置项默认值
bit1129
struts.xml
在第一部份,定义了struts.xml文件,如下所示:
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache.org/dtds/struts
- 【Kafka十三】Kafka Simple Consumer
bit1129
simple
代码中关于Host和Port是割裂开的,这会导致单机环境下的伪分布式Kafka集群环境下,这个例子没法运行。
实际情况是需要将host和port绑定到一起,
package kafka.examples.lowlevel;
import kafka.api.FetchRequest;
import kafka.api.FetchRequestBuilder;
impo
- nodejs学习api
ronin47
nodejs api
NodeJS基础 什么是NodeJS
JS是脚本语言,脚本语言都需要一个解析器才能运行。对于写在HTML页面里的JS,浏览器充当了解析器的角色。而对于需要独立运行的JS,NodeJS就是一个解析器。
每一种解析器都是一个运行环境,不但允许JS定义各种数据结构,进行各种计算,还允许JS使用运行环境提供的内置对象和方法做一些事情。例如运行在浏览器中的JS的用途是操作DOM,浏览器就提供了docum
- java-64.寻找第N个丑数
bylijinnan
java
public class UglyNumber {
/**
* 64.查找第N个丑数
具体思路可参考 [url] http://zhedahht.blog.163.com/blog/static/2541117420094245366965/[/url]
*
题目:我们把只包含因子
2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14
- 二维数组(矩阵)对角线输出
bylijinnan
二维数组
/**
二维数组 对角线输出 两个方向
例如对于数组:
{ 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 },
{ 13, 14, 15, 16 },
slash方向输出:
1
5 2
9 6 3
13 10 7 4
14 11 8
15 12
16
backslash输出:
4
3
- [JWFD开源工作流设计]工作流跳跃模式开发关键点(今日更新)
comsci
工作流
既然是做开源软件的,我们的宗旨就是给大家分享设计和代码,那么现在我就用很简单扼要的语言来透露这个跳跃模式的设计原理
大家如果用过JWFD的ARC-自动运行控制器,或者看过代码,应该知道在ARC算法模块中有一个函数叫做SAN(),这个函数就是ARC的核心控制器,要实现跳跃模式,在SAN函数中一定要对LN链表数据结构进行操作,首先写一段代码,把
- redis常见使用
cuityang
redis常见使用
redis 通常被认为是一个数据结构服务器,主要是因为其有着丰富的数据结构 strings、map、 list、sets、 sorted sets
引入jar包 jedis-2.1.0.jar (本文下方提供下载)
package redistest;
import redis.clients.jedis.Jedis;
public class Listtest
- 配置多个redis
dalan_123
redis
配置多个redis客户端
<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi=&quo
- attrib命令
dcj3sjt126com
attr
attrib指令用于修改文件的属性.文件的常见属性有:只读.存档.隐藏和系统.
只读属性是指文件只可以做读的操作.不能对文件进行写的操作.就是文件的写保护.
存档属性是用来标记文件改动的.即在上一次备份后文件有所改动.一些备份软件在备份的时候会只去备份带有存档属性的文件.
- Yii使用公共函数
dcj3sjt126com
yii
在网站项目中,没必要把公用的函数写成一个工具类,有时候面向过程其实更方便。 在入口文件index.php里添加 require_once('protected/function.php'); 即可对其引用,成为公用的函数集合。 function.php如下:
<?php /** * This is the shortcut to D
- linux 系统资源的查看(free、uname、uptime、netstat)
eksliang
netstatlinux unamelinux uptimelinux free
linux 系统资源的查看
转载请出自出处:http://eksliang.iteye.com/blog/2167081
http://eksliang.iteye.com 一、free查看内存的使用情况
语法如下:
free [-b][-k][-m][-g] [-t]
参数含义
-b:直接输入free时,显示的单位是kb我们可以使用b(bytes),m
- JAVA的位操作符
greemranqq
位运算JAVA位移<<>>>
最近几种进制,加上各种位操作符,发现都比较模糊,不能完全掌握,这里就再熟悉熟悉。
1.按位操作符 :
按位操作符是用来操作基本数据类型中的单个bit,即二进制位,会对两个参数执行布尔代数运算,获得结果。
与(&)运算:
1&1 = 1, 1&0 = 0, 0&0 &
- Web前段学习网站
ihuning
Web
Web前段学习网站
菜鸟学习:http://www.w3cschool.cc/
JQuery中文网:http://www.jquerycn.cn/
内存溢出:http://outofmemory.cn/#csdn.blog
http://www.icoolxue.com/
http://www.jikexue
- 强强联合:FluxBB 作者加盟 Flarum
justjavac
r
原文:FluxBB Joins Forces With Flarum作者:Toby Zerner译文:强强联合:FluxBB 作者加盟 Flarum译者:justjavac
FluxBB 是一个快速、轻量级论坛软件,它的开发者是一名德国的 PHP 天才 Franz Liedke。FluxBB 的下一个版本(2.0)将被完全重写,并已经开发了一段时间。FluxBB 看起来非常有前途的,
- java统计在线人数(session存储信息的)
macroli
javaWeb
这篇日志是我写的第三次了 前两次都发布失败!郁闷极了!
由于在web开发中常常用到这一部分所以在此记录一下,呵呵,就到备忘录了!
我对于登录信息时使用session存储的,所以我这里是通过实现HttpSessionAttributeListener这个接口完成的。
1、实现接口类,在web.xml文件中配置监听类,从而可以使该类完成其工作。
public class Ses
- bootstrp carousel初体验 快速构建图片播放
qiaolevip
每天进步一点点学习永无止境bootstrap纵观千象
img{
border: 1px solid white;
box-shadow: 2px 2px 12px #333;
_width: expression(this.width > 600 ? "600px" : this.width + "px");
_height: expression(this.width &
- SparkSQL读取HBase数据,通过自定义外部数据源
superlxw1234
sparksparksqlsparksql读取hbasesparksql外部数据源
关键字:SparkSQL读取HBase、SparkSQL自定义外部数据源
前面文章介绍了SparSQL通过Hive操作HBase表。
SparkSQL从1.2开始支持自定义外部数据源(External DataSource),这样就可以通过API接口来实现自己的外部数据源。这里基于Spark1.4.0,简单介绍SparkSQL自定义外部数据源,访
- Spring Boot 1.3.0.M1发布
wiselyman
spring boot
Spring Boot 1.3.0.M1于6.12日发布,现在可以从Spring milestone repository下载。这个版本是基于Spring Framework 4.2.0.RC1,并在Spring Boot 1.2之上提供了大量的新特性improvements and new features。主要包含以下:
1.提供一个新的sprin