CalTech machine learning, video 4(Error & Noise) note

思丝健康特产,干果、坚果、花草茶等天然健康产品,欢迎您的光临!

亚马逊店:http://t.cn/RyN9r0m
京东店:http://mall.jd.com/index-31856.html
当当店:http://shop.dangdang.com/12661
一号店:http://t.cn/RyNCtdV
淘宝店:https://ssjktc.taobao.com


6:44 2014-09-22 Monday

start CalTech machine learning, video 4


Error & Noise


6:56 2014-09-22
linear regression algorithm:


one-step learning


6:58 2014-09-22
nonlinear transformation


7:06 2014-09-22
feature space


7:07 2014-09-22
probability distribution


7:18 2014-09-22
error measure


7:18 2014-09-22
Error measure: E(h, f)


h == hypothesis,


f == final


7:22 2014-09-22
search of an algorithm into minimizinig 


an error function


7:23 2014-09-22
Error Measure pointwise definition:


e(h(x), f(x))


7:24 2014-09-22
overall error


7:28 2014-09-22
in-sample error, out-of-sample error


7:28 2014-09-22
in-sample error: Ein(h)


7:28 2014-09-22
From pointwise to overall


7:29 2014-09-22
use it(probability distribution) to generate the training 
examples,use it to test the hypothesis


7:38 2014-09-22
false accept, false reject


7:41 2014-09-22
take-home lesson:


the error measure should be specified by the user


8:41 2014-09-22
error measure


8:47 2014-09-22
minimize the in-sample error


8:47 2014-09-22
target distribution


8:51 2014-09-22
target distribution: P(y|x)


(x, y) is now generated by the joint distribution


P(x)P(y|x)


8:52 2014-09-22
deterministic target distribution proper + noise


8:53 2014-09-22
deterministic target, noisy target


8:54 2014-09-22
unknown target function => unknown target distribution


8:57 2014-09-22
this is the final diagram for supervised learning


8:58 2014-09-22
unknown input distribution: P(x)


unknown target distribution: P(y|x)


9:00 2014-09-22
we're trying to learn the "target distribution"


9:03 2014-09-22
learning is feasible in a probabilistic sense


9:09 2014-09-22
Eout(g) ≈ 0      // this is what we want


Eout(g) ≈ Ein(g) // this is what we have


9:13 2014-09-22
Eout(g) ≈ 0 is achieved throught:


Eout(g) ≈ Ein(g)  // this is "Hoeffding inequality"


Eout(g) ≈ 0


9:17 2014-09-22
you put them together, and you have the learning


9:18 2014-09-22
Hoeffding is all about Ein ≈ Eout


// in-sample error & out-of-sample error


9:19 2014-09-22
Learning is thus split into 2 questions:


1. Can we make sure that Eout(g) is close enough to Ein(g)?


2. Can we make Ein(g) small enough?


9:23 2014-09-22
Ein(g)  // in-sample error


Eout(g) // out-of-sample error


9:23 2014-09-22
g is just one of "hypothesis set"


f is the "final hypothesis"


9:24 2014-09-22
out-of-sample performance


9:26 2014-09-22
financial forecasting


9:27 2014-09-22
least square approximation => machine learning,


in-sample error, out-of-sample error


over-fitting


9:27 2014-09-22
dVC  // VC dimension


9:31 2014-09-22
model complexity


which is denoted by dVC(VC dimension)


9:31 2014-09-22
# of hypothesis  // M


9:33 2014-09-22
the bigger the M, the looser the bound


9:33 2014-09-22
as dVC grows, the discrepancy between 


Ein & Eout gets bigger & bigger


9:37 2014-09-22
regularization


9:37 2014-09-22
input space, input distribution


10:09 2014-09-22
generalization error,


poor generalization, good generalization


10:11 2014-09-22
training data, target function


10:19 2014-09-22
learning is possible in a probabilistic sense,


any P(x) will achieve that.


10:25 2014-09-22
the meaning of Hoeffding's inequality:


learning is possible in a probabilistic sense


10:27 2014-09-22
the problem of CIA & super market


10:28 2014-09-22
feature extraction


10:32 2014-09-22
there is a tradeoff between performance & complexity

你可能感兴趣的:(CalTech,machine,learning,big,data)