思丝健康特产,干果、坚果、花草茶等天然健康产品,欢迎您的光临!
亚马逊店:http://t.cn/RyN9r0m
京东店:http://mall.jd.com/index-31856.html
当当店:http://shop.dangdang.com/12661
一号店:http://t.cn/RyNCtdV
淘宝店:https://ssjktc.taobao.com
6:44 2014-09-22 Monday
start CalTech machine learning, video 4
Error & Noise
6:56 2014-09-22
linear regression algorithm:
one-step learning
6:58 2014-09-22
nonlinear transformation
7:06 2014-09-22
feature space
7:07 2014-09-22
probability distribution
7:18 2014-09-22
error measure
7:18 2014-09-22
Error measure: E(h, f)
h == hypothesis,
f == final
7:22 2014-09-22
search of an algorithm into minimizinig
an error function
7:23 2014-09-22
Error Measure pointwise definition:
e(h(x), f(x))
7:24 2014-09-22
overall error
7:28 2014-09-22
in-sample error, out-of-sample error
7:28 2014-09-22
in-sample error: Ein(h)
7:28 2014-09-22
From pointwise to overall
7:29 2014-09-22
use it(probability distribution) to generate the training
examples,use it to test the hypothesis
7:38 2014-09-22
false accept, false reject
7:41 2014-09-22
take-home lesson:
the error measure should be specified by the user
8:41 2014-09-22
error measure
8:47 2014-09-22
minimize the in-sample error
8:47 2014-09-22
target distribution
8:51 2014-09-22
target distribution: P(y|x)
(x, y) is now generated by the joint distribution
P(x)P(y|x)
8:52 2014-09-22
deterministic target distribution proper + noise
8:53 2014-09-22
deterministic target, noisy target
8:54 2014-09-22
unknown target function => unknown target distribution
8:57 2014-09-22
this is the final diagram for supervised learning
8:58 2014-09-22
unknown input distribution: P(x)
unknown target distribution: P(y|x)
9:00 2014-09-22
we're trying to learn the "target distribution"
9:03 2014-09-22
learning is feasible in a probabilistic sense
9:09 2014-09-22
Eout(g) ≈ 0 // this is what we want
Eout(g) ≈ Ein(g) // this is what we have
9:13 2014-09-22
Eout(g) ≈ 0 is achieved throught:
Eout(g) ≈ Ein(g) // this is "Hoeffding inequality"
Eout(g) ≈ 0
9:17 2014-09-22
you put them together, and you have the learning
9:18 2014-09-22
Hoeffding is all about Ein ≈ Eout
// in-sample error & out-of-sample error
9:19 2014-09-22
Learning is thus split into 2 questions:
1. Can we make sure that Eout(g) is close enough to Ein(g)?
2. Can we make Ein(g) small enough?
9:23 2014-09-22
Ein(g) // in-sample error
Eout(g) // out-of-sample error
9:23 2014-09-22
g is just one of "hypothesis set"
f is the "final hypothesis"
9:24 2014-09-22
out-of-sample performance
9:26 2014-09-22
financial forecasting
9:27 2014-09-22
least square approximation => machine learning,
in-sample error, out-of-sample error
over-fitting
9:27 2014-09-22
dVC // VC dimension
9:31 2014-09-22
model complexity
which is denoted by dVC(VC dimension)
9:31 2014-09-22
# of hypothesis // M
9:33 2014-09-22
the bigger the M, the looser the bound
9:33 2014-09-22
as dVC grows, the discrepancy between
Ein & Eout gets bigger & bigger
9:37 2014-09-22
regularization
9:37 2014-09-22
input space, input distribution
10:09 2014-09-22
generalization error,
poor generalization, good generalization
10:11 2014-09-22
training data, target function
10:19 2014-09-22
learning is possible in a probabilistic sense,
any P(x) will achieve that.
10:25 2014-09-22
the meaning of Hoeffding's inequality:
learning is possible in a probabilistic sense
10:27 2014-09-22
the problem of CIA & super market
10:28 2014-09-22
feature extraction
10:32 2014-09-22
there is a tradeoff between performance & complexity