这段前言主要介绍了关于计算机网络性能的两个方面的讨论。首先,计算机网络的性能可以通过一些重要的性能指标来衡量。但除了这些指标之外,还有一些非性能特征(即不直接关于速度、流量、带宽等的特征),它们也会对计算机网络的整体性能产生重要的影响。在这一节中,作者打算详细探讨这两个方面的内容。
**定义:**
速率是计算机网络中最重要的一个性能指标。在网络技术中,速率指的是数据的传送速率,也称为数据率(data rate)或比特率(bit rate)。速率衡量的是单位时间内传输的数据量,用于描述网络的传输能力。
- 基本单位:比特/秒(bit/s 或 b/s 或 bps)
- 当数据率较高时,通常使用不同的前缀来描述:
- k(kilo)= 10³ = 千bit/s
- M(Mega)= 10⁶ = 兆bit/s
- G(Giga)= 10⁹ = 吉bit/s
- T(Tera)= 10¹² = 太bit/s
- P(Peta)= 10¹⁵ = 拍bit/s
- E(Exa)= 10¹⁸ = 艾bit/s
- Z(Zetta)= 10²¹ = 泽bit/s
- Y(Yotta)= 10²⁴ = 尧bit/s
例如:4×10⁹ bit/s 的数据率记为 40 Gbit/s。
问题的引出:谁在撒谎?
**注意事项:**
1. **常见表述误区:** 在谈到网络速率时,人们常常省略速率单位中应有的bit/s,而使用如“40 G的速率”的不太正确的说法。
2. **额定速率与实际运行速率:** 在讨论网络的速率时,所指的往往是额定速率或标称速率,这并不代表网络实际上的运行速率。
**实际应用:**
速率是衡量网络性能的关键参数,影响着用户在浏览网页、下载文件和在线观看视频时的体验。一个较高的速率通常意味着更快的数据传输和更好的网络体验。
例二:
**定义与含义:**
“带宽”一词具有两个不同的含义。
1. **信号的频带宽度:**
- **定义:** 原始定义中,带宽是指信号所占据的频率范围,或者说,是信号含有的各种不同频率成分的范围。
- **例子:** 传统通信线路中的电话信号的标准带宽是3.1kHz(从300 Hz到3.4 kHz,即话音的主要成分的频率范围)。
- **单位:** 赫兹(Hz),可以是千赫、兆赫、吉赫等。
- **应用背景:** 在很长一段时间内,主干通信线路传送的是模拟信号。
2. **网络中通道的数据传输能力:**
- **定义:** 在计算机网络中,带宽主要用来表示网络中某通道传送数据的能力,或者说是“最高数据率”。
- **单位:** bit/s(比特每秒)。
- **说明:** 在计算机网络的文献中提到的“带宽”,大多数时候是指这个意思。
**频域与时域:**
- **频域称谓:** 当带宽描述的是信号的频带宽度时,这是在频域中描述的。
- **时域称谓:** 当带宽描述的是通道的数据传输能力时,这是在时域中描述的。
- **关联:** 一条通信链路的带宽越宽,其所能传输的最高数据率也越高。即,带宽在两个定义中具有内在的关联性。
**计算机领域的特殊计量单位:**
- **二进制计量:** 在计算机领域中,数的计算使用二进制,因此,K=2¹⁰=1024,M=2²⁰,G=2³⁰,T=2⁴⁰,P=2⁵⁰,E=2⁶⁰,Z=2⁷⁰,Y=2⁸⁰。
- **数据量单位:** 计算机中的数据量通常用字节(B,代表byte)作为度量单位,而一个字节代表8个比特。
**注意事项:**
- 在通信和计算机领域中,单位的大小写和表示方法可能会有不同,需仔细辨别。
- 在计算中,大写K既可以表示1000,也可以表示1024,因此需要特别小心,以免弄错。
**定义与意义:**
- **定义:** 吞吐量表示在单位时间内通过某个网络(或信道、接口)传输的数据的实际数量。
- **实用性:** 吞吐量常用于实际网络的性能测量,它能反映出实际中有多少数据能够通过网络。
**与速率和带宽的关系:**
- 吞吐量受到网络的带宽和网络的额定速率的限制。
- 例如,对于一个额定速率为1 Gbit/s的以太网,这个速率值就是该以太网吞吐量的上限值。
**实际吞吐量与额定速率的差异:**
- 实际的吞吐量可能远低于网络的额定速率。
- 以1 Gbit/s的以太网为例,其实际的吞吐量可能只有100 Mbit/s,远未达到其额定速率。
**表示单位:**
- 吞吐量通常以bit/s(比特每秒)来表示,但有时也可用每秒传送的字节数或帧数来表示。
**实例与注意事项:**
- 对网络性能的实际测量和理论值之间可能存在差异,需要对实际的吞吐量进行测量以获取准确的网络性能数据。
- 当评估网络性能时,理解吞吐量、带宽和速率之间的关系与区别是非常重要的,这有助于准确地理解和解释网络的实际运行状态。
**定义:**
- 时延(也称为延迟或迟延)指的是数据(无论是报文、分组还是单一比特)从网络的一个端传到另一个端所需的时间。
- 它是网络性能的重要指标。
**时延的组成:**
1. **发送时延(Transmission Delay):**
- 发送时延是指主机或路由器发送整个数据帧所需的时间。
- 计算公式:发送时延 = 数据帧长度(bit) / 发送速率(bit/s)。
- 发送时延与发送的数据帧长度成正比,与发送速率成反比。
2. **传播时延(Propagation Delay):**
- 传播时延是指电磁波在信道中传播一定距离所需的时间。
- 计算公式:传播时延 = 信道长度(m) / 电磁波在信道上的传播速率(m/s)。
- 光在自由空间的传播速率为3.0×10^8 km/s。而在网络传输媒体如光纤或铜线中,传播速率通常较低。
3. **处理时延:**
- 当主机或路由器收到分组时,需要花费一定的时间来处理分组,这产生了处理时延。
4. **排队时延:**
- 分组在经过网络时,经常需要在路由器的输入或输出队列中等待。这造成了排队时延。
- 排队时延受网络的通信量影响,当网络拥塞时,排队时延会增加,甚至导致分组丢失。
**总时延的计算:**
总时延 = 发送时延 + 传播时延 + 处理时延 + 排队时延
**时延的影响:**
- 通常,低时延的网络性能优于高时延的网络。
- 在某些情况下,一个低速但低时延的网络可能比一个高速但高时延的网络性能更好。
**其他概念:**
- 时延和速率:提高数据的发送速率可能减小发送时延,但不会影响信道中的电磁波传播速率。传播速率取决于信道的物理介质。
- **往返时间(RTT)**:在许多网络交互中,需要考虑往返时间,即数据从发送端发送到接收端并返回确认的总时间。
**注意点:**
- 高速网络链路提高的是数据的发送速率,而不是电磁波在信道中的传播速率。
- 电磁波在光纤中的传播速率实际上可能低于在铜线中的传播速率。
**定义:**
传播时延带宽积是一个网络性能的关键度量,它表示链路上可容纳的比特数量,即链路的“有效容量”。
**计算公式:**
\[ 时延带宽积 = 传播时延 × 带宽 \]
例如:链路的传播时延为20ms, 带宽为10 Mbit/s。
\[ 时延带宽积 = 20×10^{-3} × 10 × 10^6 = 2 × 10^5 \] bit
这意味着,如果发送端连续发送数据,当发送的第一个比特即将达到终点时,发送端已经发送了20万个比特,这20万个比特都在链路上进行传输。
**时延带宽积的实际意义:**
- 时延带宽积又被称为链路的“比特长度”,因为它表示链路上同时存在的比特数量。
- 从几何视角看,可以将链路想象为一个管道,其中:
- 管道的长度 = 链路的传播时延 (以时间为单位)
- 管道的面积 = 链路的带宽
- 时延带宽积 = 管道的体积 = 链路可以容纳的比特数量
如图1-15所示,链路就像一个圆柱形的空心管道。管道中的比特表示从发送端发送出去但还未到达接收端的比特。
**关于利用率:**
- 对于正在传输数据的链路,只有当这个“管道”充满比特时,链路的利用率才达到最大。这意味着链路的传输能力被完全使用。
- 提高链路的利用率意味着更高的传输效率和更好的网络性能。
**其他概念:**
- 带宽是链路在单位时间内能传输的最大数据速率。
- 传播速率是数据在链路中传播的速度,例如光在光纤中的传播速度与其在铜线中的速度是不同的。
**结论:**
时延带宽积是评估网络链路效率的关键度量。理解并最大化链路的时延带宽积对于实现高效的网络通信至关重要。
**定义:**
往返时间RTT是计算机网络中描述数据从源点发送到目的地,然后从目的地返回到源点所需的总时间的性能指标。在许多网络交互中,信息通常需要双向传输,所以RTT是一个关键的度量。
**计算示例:**
2. 当B正确地收到100 MB的数据后,它向A发送确认。A只能在接收到B的确认后继续向B发送数据。因此,A必须等待一个往返时间RTT。在此,我们假定确认信息很短,所以忽略B发送确认的时间。如果RTT = 2s,则:
这意味着,考虑到RTT,A的实际有效发送速率为80.7 Mbit/s,这比原始速率100 Mbit/s小。
**其他要点:**
- 在互联网中,RTT不仅仅包括信号在通信媒介中传播的时间,还包括中间节点的处理延迟、队列延迟以及数据的转发延迟。
- 在使用卫星通信的情况下,由于信号需要在地面和卫星之间往返,RTT会相对较长,成为一个非常重要的性能指标。
**结论:**
了解和管理RTT是网络性能优化的关键。尤其是在需要频繁的双向交互的应用中,如实时在线游戏或VoIP,高RTT可能导致不良的用户体验。因此,时常测量和优化RTT对于确保良好的网络性能至关重要。
**定义:**
利用率描述了网络或信道的使用情况。它有两种类型:信道利用率和网络利用率。
- **信道利用率**: 表示某一信道在多少时间内是被使用的(即有数据通过)。信道完全空闲时,其利用率为零。
- **网络利用率**: 表示整个网络的信道利用率的加权平均值。
**重要性:**
信道利用率并非越高越好。与实际道路交通类似,网络上的“流量”过大会导致堵塞和增加的延迟。在网络中,数据包可能需要在路由器或交换机上排队,等待处理,导致网络延迟的增加。
**实际应用:**
当网络的利用率接近其最大值时,其延迟接近无穷大。这强调了信道或网络的过度利用会导致巨大的延迟。为此,许多大型ISP会控制主干网络的利用率,确保其不超过50%。如果利用率超过这个阈值,ISP可能会考虑扩展网络或增加带宽以满足需求。
**结论:**
了解并管理网络和信道的利用率至关重要,以确保网络的高效运行和低延迟。过高的利用率可能导致显著的网络延迟,从而降低用户体验和网络应用的效率。
**定义**:
- **丢包率 (Packet Loss Rate)**: 是计算机网络中,在传输数据包过程中,数据包丢失的比例。通常,它表示为丢失的数据包数与总传输数据包数的比值,经常以百分比来表示。
---
**原因**:
1. **网络拥塞**: 当网络上的数据流量过大,超出网络或网络设备的处理能力时,就可能会出现丢包。
2. **路由器或交换机资源不足**: 当它们的缓冲区满时,可能会丢弃新到达的包。
3. **网络信号干扰**: 特别是在无线网络中,其他电磁信号可能会干扰数据包传输。
4. **物理设备故障**: 如有问题的网线、接口或硬件设备。
5. **协议超时**: 例如,TCP需要确认每个发送的包。如果在指定时间内未收到确认,数据包可能会被视为已丢失。
6. **恶意攻击**: 如拒绝服务攻击(DoS)可能导致网络资源饱和,从而引起丢包。
---
**检测工具**:
- **Ping**: 最常用的工具之一,用于测试两个网络节点之间的可达性,同时也可以用于估计丢包率。
- **Traceroute**: 跟踪数据包经过的路径并报告关于每一跳的信息,包括丢包。
---
**影响**:
1. **通话质量下降**: 在VoIP通话或视频会议中,高的丢包率可能导致通话中断或质量降低。
2. **在线游戏延迟**: 游戏玩家可能会经历所谓的"卡顿"。
3. **文件传输速度降低**: TCP在检测到丢包时会减少其发送速度。
---
**缓解策略**:
1. **增加带宽**: 减少网络拥塞,为数据传输提供更大的空间。
2. **使用QoS (Quality of Service)**: 确保关键数据的优先传输。
3. **升级网络设备**: 新的设备可能提供更大的缓冲区和更好的数据处理能力。
4. **使用前向纠错**: 通过发送额外的纠错信息来减少需要重新传输的数据包。
5. **改进路由策略**: 确保数据包选择最佳的路径传输。
---
这就是关于丢包率的基础知识。了解丢包率对于网络管理员来说是非常重要的,因为它直接影响到用户的网络体验。