7、数值的扩展

1、Number.isFinite()、Number.isNaN()

Number.isFinite()用来检查一个数值是否为有限的(finite),即不是Infinity。

image.png
Number.isFinite(15); // true
Number.isFinite(0.8); // true
Number.isFinite(NaN); // false
Number.isFinite(Infinity); // false
Number.isFinite(-Infinity); // false
Number.isFinite('foo'); // false
Number.isFinite('15'); // false
Number.isFinite(true); // false

注意,如果参数类型不是数值,Number.isFinite一律返回false。

Number.isNaN()用来检查一个值是否为NaN。

Number.isNaN(NaN) // true
Number.isNaN(15) // false
Number.isNaN('15') // false
Number.isNaN(true) // false
Number.isNaN(9/NaN) // true
Number.isNaN('true' / 0) // true
Number.isNaN('true' / 'true') // true

如果参数类型不是NaN,Number.isNaN一律返回false。

它们与传统的全局方法isFinite()和isNaN()的区别在于,传统方法先调用Number()将非数值的值转为数值,再进行判断,而这两个新方法只对数值有效,Number.isFinite()对于非数值一律返回false, Number.isNaN()只有对于NaN才返回true,非NaN一律返回false。

isFinite(25) // true
isFinite("25") // true
Number.isFinite(25) // true
Number.isFinite("25") // false

isNaN(NaN) // true
isNaN("NaN") // true
Number.isNaN(NaN) // true
Number.isNaN("NaN") // false
Number.isNaN(1) // false
Number()函数转换规则.png

2、Number.parseInt(),Number.parseFloat()

ES6 将全局方法parseInt()和parseFloat(),移植到Number对象上面,行为完全保持不变。

// ES5的写法
parseInt('12.34') // 12
parseFloat('123.45#') // 123.45

// ES6的写法
Number.parseInt('12.34') // 12
Number.parseFloat('123.45#') // 123.45

这样做的目的,是逐步减少全局性方法,使得语言逐步模块化。

Number.parseInt === parseInt // true
Number.parseFloat === parseFloat // true

parseInt()注解:

parseInt()函数转换规则.png

parseInt()函数注意事项.png

parseInt()函数的第二个参数.png

parseInt()函数使用建议.png

parseFloat()函数转换规则.png

3、Number.isInteger()

Number.isInteger()用来判断一个数值是否为整数。

Number.isInteger(25) // true
Number.isInteger(25.1) // false

JavaScript 内部,整数和浮点数采用的是同样的储存方法,所以 25 和 25.0 被视为同一个值。

Number.isInteger(25) // true
Number.isInteger(25.0) // true

JavaScript内部,所有数字都是以64位浮点数形式储存,即使整数也是如此。所以,1与1.0是相等的,而且1加上1.0得到的还是一个整数,不会像有些语言那样变成小数。

1 === 1.0 // true

1 + 1.0 // 2

由于浮点数不是精确的值,所以涉及小数的比较和运算要特别小心。

0.1 + 0.2 === 0.3
// false

0.1 + 0.2 
// 0.30000000000000004

0.3 / 0.1
// 2.9999999999999996

(0.3-0.2) === (0.2-0.1)
// false

如果参数不是数值,Number.isInteger返回false。

Number.isInteger() // false
Number.isInteger(null) // false
Number.isInteger('15') // false
Number.isInteger(true) // false

注意,由于 JavaScript 采用 IEEE 754 标准,数值存储为64位双精度格式,数值精度最多可以达到 53 个二进制位(1 个隐藏位与 52 个有效位)。如果数值的精度超过这个限度,第54位及后面的位就会被丢弃,这种情况下,Number.isInteger可能会误判。

Number.isInteger(3.0000000000000002) // true

上面代码中,Number.isInteger的参数明明不是整数,但是会返回true。原因就是这个小数的精度达到了小数点后16个十进制位,转成二进制位超过了53个二进制位,导致最后的那个2被丢弃了。

类似的情况还有,如果一个数值的绝对值小于Number.MIN_VALUE(5E-324),即小于 JavaScript 能够分辨的最小值,会被自动转为 0。这时,Number.isInteger也会误判。

Number.isInteger(5E-324) // false
Number.isInteger(5E-325) // true

上面代码中,5E-325由于值太小,会被自动转为0,因此返回true。

总之,如果对数据精度的要求较高,不建议使用Number.isInteger()判断一个数值是否为整数。

4、Number.EPSILON()

ES6 在Number对象上面,新增一个极小的常量Number.EPSILON。根据规格,它表示 1 与大于 1 的最小浮点数之间的差。

对于 64 位浮点数来说,大于 1 的最小浮点数相当于二进制的1.00..001,小数点后面有连续 51 个零。这个值减去 1 之后,就等于 2 的 -52 次方。

Number.EPSILON === Math.pow(2, -52)
// true
Number.EPSILON
// 2.220446049250313e-16
Number.EPSILON.toFixed(20)
// "0.00000000000000022204"

Number.EPSILON实际上是 JavaScript 能够表示的最小精度。误差如果小于这个值,就可以认为已经没有意义了,即不存在误差了。

引入一个这么小的量的目的,在于为浮点数计算,设置一个误差范围。我们知道浮点数计算是不精确的。

0.1 + 0.2
// 0.30000000000000004

0.1 + 0.2 - 0.3
// 5.551115123125783e-17

5.551115123125783e-17.toFixed(20)
// '0.00000000000000005551'

上面代码解释了,为什么比较0.1 + 0.2与0.3得到的结果是false。

0.1 + 0.2 === 0.3 // false

Number.EPSILON可以用来设置“能够接受的误差范围”。比如,误差范围设为 2 的-50 次方(即Number.EPSILON * Math.pow(2, 2)),即如果两个浮点数的差小于这个值,我们就认为这两个浮点数相等。

5.551115123125783e-17 < Number.EPSILON * Math.pow(2, 2)
// true

因此,Number.EPSILON的实质是一个可以接受的最小误差范围。

function withinErrorMargin (left, right) {
  return Math.abs(left - right) < Number.EPSILON * Math.pow(2, 2);
}

0.1 + 0.2 === 0.3 // false
withinErrorMargin(0.1 + 0.2, 0.3) // true

1.1 + 1.3 === 2.4 // false
withinErrorMargin(1.1 + 1.3, 2.4) // true

上面的代码为浮点数运算,部署了一个误差检查函数。

5、安全整数和Number.isSafeInteger()

JavaScript 能够准确表示的整数范围在-253到253之间(不含两个端点),超过这个范围,无法精确表示这个值。

Math.pow(2, 53) // 9007199254740992

9007199254740992  // 9007199254740992
9007199254740993  // 9007199254740992

Math.pow(2, 53) === Math.pow(2, 53) + 1
// true

上面代码中,超出 2 的 53 次方之后,一个数就不精确了。

ES6 引入了Number.MAX_SAFE_INTEGERNumber.MIN_SAFE_INTEGER这两个常量,用来表示这个范围的上下限。

Number.MAX_SAFE_INTEGER === Math.pow(2, 53) - 1
// true
Number.MAX_SAFE_INTEGER === 9007199254740991
// true

Number.MIN_SAFE_INTEGER === -Number.MAX_SAFE_INTEGER
// true
Number.MIN_SAFE_INTEGER === -9007199254740991
// true

Number.isSafeInteger()则是用来判断一个整数是否落在这个范围之内。

Number.isSafeInteger('a') // false
Number.isSafeInteger(null) // false
Number.isSafeInteger(NaN) // false
Number.isSafeInteger(Infinity) // false
Number.isSafeInteger(-Infinity) // false

Number.isSafeInteger(3) // true
Number.isSafeInteger(1.2) // false
Number.isSafeInteger(9007199254740990) // true
Number.isSafeInteger(9007199254740992) // false

Number.isSafeInteger(Number.MIN_SAFE_INTEGER - 1) // false
Number.isSafeInteger(Number.MIN_SAFE_INTEGER) // true
Number.isSafeInteger(Number.MAX_SAFE_INTEGER) // true
Number.isSafeInteger(Number.MAX_SAFE_INTEGER + 1) // false

实际使用这个函数时,需要注意。验证运算结果是否落在安全整数的范围内,不要只验证运算结果,而要同时验证参与运算的每个值。

Number.isSafeInteger(9007199254740993)
// false
Number.isSafeInteger(990)
// true
Number.isSafeInteger(9007199254740993 - 990)
// true
9007199254740993 - 990
// 返回结果 9007199254740002
// 正确答案应该是 9007199254740003

上面代码中,9007199254740993不是一个安全整数,但是Number.isSafeInteger会返回结果,显示计算结果是安全的。这是因为,这个数超出了精度范围,导致在计算机内部,以9007199254740992的形式储存。

9007199254740993 === 9007199254740992
// true

所以,如果只验证运算结果是否为安全整数,很可能得到错误结果。下面的函数可以同时验证两个运算数和运算结果。

function trusty (left, right, result) {
  if (
    Number.isSafeInteger(left) &&
    Number.isSafeInteger(right) &&
    Number.isSafeInteger(result)
  ) {
    return result;
  }
  throw new RangeError('Operation cannot be trusted!');
}

trusty(9007199254740993, 990, 9007199254740993 - 990)
// RangeError: Operation cannot be trusted!

trusty(1, 2, 3)
// 3

6、Math对象的扩展

Math.trunc()

Math.trunc方法用于去除一个数的小数部分,返回整数部分。

Math.trunc(4.1) // 4
Math.trunc(4.9) // 4
Math.trunc(-4.1) // -4
Math.trunc(-4.9) // -4
Math.trunc(-0.1234) // -0

对于非数值,Math.trunc内部使用Number方法将其先转为数值。

Math.trunc('123.456') // 123
Math.trunc(true) //1
Math.trunc(false) // 0
Math.trunc(null) // 0

对于空值和无法截取整数的值,返回NaN。

Math.trunc(NaN);      // NaN
Math.trunc('foo');    // NaN
Math.trunc();         // NaN
Math.trunc(undefined) // NaN

对于没有部署这个方法的环境,可以用下面的代码模拟。

Math.trunc = Math.trunc || function(x) {
  return x < 0 ? Math.ceil(x) : Math.floor(x);
};
Math.sign()

Math.sign方法用来判断一个数到底是正数、负数、还是零。对于非数值,会先将其转换为数值。

它会返回五种值。

  • 参数为正数,返回+1;
  • 参数为负数,返回-1;
  • 参数为 0,返回0;
  • 参数为-0,返回-0;
  • 其他值,返回NaN。
Math.sign(-5) // -1
Math.sign(5) // +1
Math.sign(0) // +0
Math.sign(-0) // -0
Math.sign(NaN) // NaN

如果参数是非数值,会自动转为数值。对于那些无法转为数值的值,会返回NaN。

Math.sign('')  // 0
Math.sign(true)  // +1
Math.sign(false)  // 0
Math.sign(null)  // 0
Math.sign('9')  // +1
Math.sign('foo')  // NaN
Math.sign()  // NaN
Math.sign(undefined)  // NaN

对于没有部署这个方法的环境,可以用下面的代码模拟。

Math.sign = Math.sign || function(x) {
  x = +x; // convert to a number
  if (x === 0 || isNaN(x)) {
    return x;
  }
  return x > 0 ? 1 : -1;
};
Math.cbrt()

Math.cbrt方法用于计算一个数的立方根。

Math.cbrt(-1) // -1
Math.cbrt(0)  // 0
Math.cbrt(1)  // 1
Math.cbrt(2)  // 1.2599210498948734

对于非数值,Math.cbrt方法内部也是先使用Number方法将其转为数值。

Math.cbrt('8') // 2
Math.cbrt('hello') // NaN

对于没有部署这个方法的环境,可以用下面的代码模拟。

Math.cbrt = Math.cbrt || function(x) {
  var y = Math.pow(Math.abs(x), 1/3);
  return x < 0 ? -y : y;
};

7、指数运算符

ES2016 新增了一个指数运算符(**)。

2 ** 2 // 4
2 ** 3 // 8

这个运算符的一个特点是右结合,而不是常见的左结合。多个指数运算符连用时,是从最右边开始计算的。

// 相当于 2 ** (3 ** 2)
2 ** 3 ** 2
// 512

上面代码中,首先计算的是第二个指数运算符,而不是第一个。

指数运算符可以与等号结合,形成一个新的赋值运算符(**=)。

let a = 1.5;
a **= 2;
// 等同于 a = a * a;

let b = 4;
b **= 3;
// 等同于 b = b * b * b;

注意,V8 引擎的指数运算符与Math.pow的实现不相同,对于特别大的运算结果,两者会有细微的差异。

Math.pow(99, 99)
// 3.697296376497263e+197

99 ** 99
// 3.697296376497268e+197

上面代码中,两个运算结果的最后一位有效数字是有差异的。

8、BigInt 数据类型

简介

JavaScript 所有数字都保存成 64 位浮点数,这给数值的表示带来了两大限制。一是数值的精度只能到 53 个二进制位(相当于 16 个十进制位),大于这个范围的整数,JavaScript 是无法精确表示的,这使得 JavaScript 不适合进行科学和金融方面的精确计算。二是大于或等于2的1024次方的数值,JavaScript 无法表示,会返回Infinity。

// 超过 53 个二进制位的数值,无法保持精度
Math.pow(2, 53) === Math.pow(2, 53) + 1 // true

// 超过 2 的 1024 次方的数值,无法表示
Math.pow(2, 1024) // Infinity

ES2020 引入了一种新的数据类型 BigInt(大整数),来解决这个问题。BigInt 只用来表示整数,没有位数的限制,任何位数的整数都可以精确表示。

const a = 2172141653n;
const b = 15346349309n;

// BigInt 可以保持精度
a * b // 33334444555566667777n

// 普通整数无法保持精度
Number(a) * Number(b) // 33334444555566670000

为了与 Number 类型区别,BigInt 类型的数据必须添加后缀n。

1234 // 普通整数
1234n // BigInt

// BigInt 的运算
1n + 2n // 3n

BigInt 同样可以使用各种进制表示,都要加上后缀n。

0b1101n // 二进制
0o777n // 八进制
0xFFn // 十六进制

BigInt 与普通整数是两种值,它们之间并不相等。

42n === 42 // false

BigInt 可以使用负号(-),但是不能使用正号(+),因为会与 asm.js 冲突。

-42n // 正确
+42n // 报错
asm.js介绍.png
BigInt 对象

JavaScript 原生提供BigInt对象,可以用作构造函数生成 BigInt 类型的数值。转换规则基本与Number()一致,将其他类型的值转为 BigInt。

BigInt(123) // 123n
BigInt('123') // 123n
BigInt(false) // 0n
BigInt(true) // 1n

BigInt()构造函数必须有参数,而且参数必须可以正常转为数值,下面的用法都会报错。

new BigInt() // TypeError
BigInt(undefined) //TypeError
BigInt(null) // TypeError
BigInt('123n') // SyntaxError
BigInt('abc') // SyntaxError

上面代码中,尤其值得注意字符串123n无法解析成 Number 类型,所以会报错。

参数如果是小数,也会报错。

BigInt(1.5) // RangeError
BigInt('1.5') // SyntaxError
BigInt讲解.png

BigInt其他运算.png

你可能感兴趣的:(7、数值的扩展)